Bài 3 trang 63 SGK Hình học lớp 11

Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi. Gọi O là giao điểm của hai đường chéo AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (α) đi qua O, song song với AB và SC. Thiết diện đó là hình gì?

Quảng cáo

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một tứ giác lồi. Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\). Xác định thiết diện của hình chóp cắt bởi mặt phẳng \((α)\) đi qua \(O\), song song với \(AB\) và \(SC\). Thiết diện đó là hình gì?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng nội dung của định lí 2:

Cho đường thẳng \(a\) song song với mặt phẳng \(\alpha\). Nếu mặt phẳng \(\beta\) chứa \(a\) và cắt \(\alpha\) theo giao tuyến \(b\) thì \(b\) song song với \(a.\)

Lời giải chi tiết

+) \((α) // AB, AB ⊂ (ABCD)\), \(O\) là điểm chung của \((α)\) và \((ABCD)\)

\(\Rightarrow\) Giao tuyến của hai mặt phẳng \(( α)\) và \((ABCD)\) là đường thẳng qua \(O\) và song song với \(AB\).

Trong \((ABCD)\) qua \(O\) kẻ \(MN // AB\)  \((M \in BC, N \in AD)\)

\( \Rightarrow \left( \alpha  \right) \cap \left( {ABCD} \right) = MN\)

+) \((α) // SC, SC ⊂ (SBC)\), \(M\) là điểm chung của \((α)\) và \((SBC)\)

\(\Rightarrow\) Giao tuyến của hai mặt phẳng \(( α)\) và \((SBC)\) là đường thẳng qua \(M\) và song song với \(SC\).

Trong \((SBC)\) qua \(M\) kẻ \(MQ // SC\)  \((Q \in SB)\)

\( \Rightarrow \left( \alpha  \right) \cap \left( {SBC} \right) = MQ\)

+) \((α) // AB, AB ⊂ (SAB)\), \(Q\) là điểm chung của \((α)\) và \((SAB)\)

\(\Rightarrow\) Giao tuyến của hai mặt phẳng \(( α)\) và \((SAB)\) là đường thẳng qua \(Q\) và song song với \(AB\).

Trong \((SAB)\) qua \(Q\) kẻ \(QP // AB\) \((P \in SA)\)

\( \Rightarrow \left( \alpha  \right) \cap \left( {SAB} \right) = QP\)

+) \( \Rightarrow \left( \alpha  \right) \cap \left( {SAD} \right) = NP\)

Vậy thiết diện của hình chóp khi cắt bởi mặt phẳng \((\alpha)\) là tứ giác \(MNPQ\) có \(MN//PQ//AB\)

Vậy thiết diện là hình thang \(MNPQ\).

 Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close