Bài 2 trang 63 SGK Hình học lớp 11

Cho tứ diện ABCD. Trên cạnh AB lấy một điểm M. Cho (α) là mặt phẳng qua M, song song với hai đường thẳng AC và BD

Quảng cáo

Đề bài

Cho tứ diện \(ABCD\). Trên cạnh \(AB\) lấy một điểm \(M\). Cho \((α)\) là mặt phẳng qua \(M\), song song với hai đường thẳng \(AC\) và \(BD\)

a) Tìm giao tuyến của \((α)\) với các mặt tứ diện

b) Thiết diện của tứ diện cắt bởi mặt phẳng \((α)\) là hình gì?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Vận dụng định lí 2:

Cho đường thẳng \(a\) song song với mặt phẳng \(\alpha\). Nếu mặt phẳng \(\beta\) chứa \(a\) và cắt \(\alpha\) theo giao tuyến \(b\) thì \(b\) song song với \(a\).

Quảng cáo
decumar

Lời giải chi tiết

a) Ta có:

+ \((α) // AC\)

⇒ Giao tuyến của \((α)\) và \((ABC)\) là đường thẳng song song với \(AC.\)

Mà \(M ∈ (ABC) ∩ (α).\)

\(⇒ (ABC) ∩ (α) = MN\) là đường thẳng qua \(M,\) song song với \(AC (N ∈ BC).\)

+ Tương tự \((α) ∩ (ABD) = MQ\) là đường thẳng qua \(M\) song song với \(BD (Q ∈ AD).\)

+ \((α) ∩ (BCD) = NP\) là đường thẳng qua \(N\) song song với \(BD (P ∈ CD).\)

+ \((α) ∩ (ACD) = QP.\)

b) Ta có: 

\(\left\{ \begin{array}{l}
\left( \alpha \right) \cap \left( {ABD} \right) = MQ\\
\left( \alpha \right) \cap \left( {ABC} \right) = MN\\
\left( \alpha \right) \cap \left( {ACD} \right) = PQ\\
\left( \alpha \right) \cap \left( {BCD} \right) = PN
\end{array} \right.\) nên thiết diện là tứ giác \(MNPQ.\)

\(\left\{ \begin{array}{l}
\left( \alpha \right) \cap \left( {ACD} \right) = PQ\\
AC//\left( \alpha \right)\\
AC \subset \left( {ACD} \right)
\end{array} \right. \Rightarrow PQ//AC\).

Mà \(MN//AC\) (câu a) nên \(MN//PQ.\)

Lại có: \(MQ//BD, NP//BD\) (câu a) nên \(MQ//NP.\)

Tứ giác \(MNPQ\) có hai cặp cạnh đối song song nên là hình bình hành.

Loigiaihay.com 

Quảng cáo

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

close