Bài 28 trang 53 SGK Toán 9 tập 2

Tìm hai số u và v trong mỗi trường hợp sau:

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

 Tìm hai số u và v trong mỗi trường hợp sau:

LG a

\(u + v = 32, uv = 231\)

Phương pháp giải:

Nếu hai số có tổng bằng S và tích bằng P (và thỏa mãn điều kiện \({S^2} - 4P\ge 0\) ) thì hai số đó là hai nghiệm của phương trình \({x^2} - Sx + P = 0\).

Sau đó tính \(\Delta\) hoặc \(\Delta'\) và sử dụng công thức nghiệm (hoặc công thức nghiệm thu gọn)  để tìm ra nghiệm của phương trình

Lời giải chi tiết:

Vì \({32^2} - 4.231 = 100 > 0\)

Nên \(u\) và \(v\) là nghiệm của phương trình: \({x^2}-{\rm{ }}32x{\rm{ }} + {\rm{ }}231{\rm{ }} = {\rm{ }}0\)

\(a = 1; b' = -16; c = 231.\)  

\(\Delta' {\rm{ }} = {\rm{ ( - }}16{)^2}-{\rm{ }}231.1{\rm{ }} = {\rm{ }}256{\rm{ }}-{\rm{ }}231{\rm{ }} = {\rm{ }}25,{\rm{ }}\sqrt {\Delta '} {\rm{ }} = {\rm{ }}5\)

\(\begin{array}{l}
{x_1} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a} = \dfrac{{ - \left( { - 16} \right) - 5}}{1} = 11\\
{x_2} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a} = \dfrac{{ - \left( { - 16} \right) + 5}}{1} = 21
\end{array}\)

Vậy \(u = 21, v = 11\) hoặc \(u = 11, v = 21\)

LG b

\(u + v = -8, uv = -105\)

Phương pháp giải:

Nếu hai số có tổng bằng S và tích bằng P (và thỏa mãn điều kiện \({S^2} - 4P\ge 0\) ) thì hai số đó là hai nghiệm của phương trình \({x^2} - Sx + P = 0\).

Sau đó tính \(\Delta\) hoặc \(\Delta'\) và sử dụng công thức nghiệm (hoặc công thức nghiệm thu gọn)  để tìm ra nghiệm của phương trình

Lời giải chi tiết:

Vì \({\left( { - 8} \right)^2} - 4.\left( { - 105} \right) = 484 > 0\)

Nên \(u\), \(v\) là nghiệm của phương trình:

\({{x^2} + {\rm{ }}8x{\rm{ }}-{\rm{ }}105{\rm{ }} = {\rm{ }}0}\)

\(a = 1; b' = 4; c = - 105\)

 Ta có: \(Δ’ = 16 – 1.(-105) = 121 > 0\)

\(\begin{array}{l}
{x_1} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a} = \dfrac{{ - 4 - 11}}{1} =  - 15\\
{x_2} = \dfrac{{ - b '+ \sqrt {\Delta '} }}{a} = \dfrac{{ - 4 + 11}}{1} = 7
\end{array}\)

Vậy \(u = 7, v = -15\) hoặc \(u = -15, v = 7\).

LG c

\(u + v = 2, uv = 9\)

Phương pháp giải:

Nếu hai số có tổng bằng S và tích bằng P (và thỏa mãn điều kiện \({S^2} - 4P\ge 0\) ) thì hai số đó là hai nghiệm của phương trình \({x^2} - Sx + P = 0\).

Sau đó tính \(\Delta\) hoặc \(\Delta'\) và sử dụng công thức nghiệm (hoặc công thức nghiệm thu gọn)  để tìm ra nghiệm của phương trình

Lời giải chi tiết:

 Vì \({{2^{2}}-{\rm{ }}4{\rm{ }}.{\rm{ }}9{\rm{ }} < {\rm{ }}0}\) nên không có giá trị nào của \(u\) và \(v\) thỏa mãn điều kiện đã cho.

Loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close