Bài 33 trang 54 SGK Toán 9 tập 2Chứng tỏ rằng nếu phương trình Quảng cáo
Đề bài Chứng tỏ rằng nếu phương trình \(a{x^2} + bx + c = 0\) có nghiệm là \({x_1}\) và \({x_2}\) thì tam thức \(a{x^2} + bx + c \) phân tích được thành nhân tử như sau: \(a{x^2} + {\rm{ }}bx{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2})\). Áp dụng: Phân tích đa thức thành nhân tử. a)\(2{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}3\) b) \({\rm{ }}3{x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}2\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết + Biến đổi vế phải \(a(x-x_1)(x-x_2)\) và sử dụng hệ thức Vi-ét để đưa về bằng với vế trái \(ax^2+bx+c\). + Áp dụng: Tìm nghiệm của mỗi phương trình bằng công thức nghiệm rồi thay vào công thức \(a{x^2} + {\rm{ }}bx{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2})\). Lời giải chi tiết Vì \(x_1;x_2\) là hai nghiệm của phương trình \(ax^2+bx+c=0\) nên theo hệ thức Vi-ét ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}.{x_2} = \dfrac{c}{a}\end{array} \right.\) Xét \(a{x^2} + {\rm{ }}bx{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2})\). Biến đổi vế phải: \(a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2}){\rm{ }} \) \(= a\left( {{x^2} - x{x_2} - x{x_1} + {x_1}{x_2}} \right) \) \(= {\rm{ }}a{x^2}-{\rm{ }}a({x_1} + {\rm{ }}{x_2})x{\rm{ }} + {\rm{ }}a{x_1}{x_2}\) \(\displaystyle = a{x^2} - a\left( { - {b \over a}} \right)x + a{c \over a} = a{x^2} + bx + c\) Vậy phương trình \(a{x^2} + bx + c = 0\) có nghiệm là \({x_1},{x_2}\) thì: \(a{x^2} + {\rm{ }}bx{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2})\). Áp dụng: a) Phương trình \(2{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\) có \(a + b + c = 2 – 5 + 3 = 0\) nên có hai nghiệm là \(\displaystyle {x_1} = 1,{x_2} = {\rm{ }}{3 \over 2}\) nên: \(\displaystyle 2{x^2}{\rm{ + }}5x + 3 = 2(x{\rm{ - }}1)(x - {\rm{ }}{3 \over 2}) = (x - 1)(2x - 3)\) b) Phương trình \({\rm{ }}3{x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}2=0\) có \(a = 3, b = 8, b’ = 4, c = 2\). Nên \(\Delta' {\rm{ }} = {\rm{ }}{4^2}-{\rm{ }}3{\rm{ }}.{\rm{ }}2{\rm{ }} = {\rm{ }}10\) suy ra phương trình có hai nghiệm là: \({x_1}\) = \(\dfrac{-4 - \sqrt{10}}{3}\), \({x_2}\)= \(\dfrac{-4 + \sqrt{10}}{3}\) nên: \(\displaystyle 3{x^2} + 8x + 2 = 3(x - {\rm{ }}{{ - 4 - \sqrt {10} } \over 3})(x - {\rm{ }}{{ - 4 + \sqrt {10} } \over 3})\) \(\displaystyle = 3(x + {\rm{ }}{{4 + \sqrt {10} } \over 3})(x + {\rm{ }}{{4 - \sqrt {10} } \over 3})\) Loigiaihay.com
Quảng cáo
|