Bài 13 trang 7 SBT Hình học 10 Nâng cao

Giải bài 13 trang 7 sách bài tập Hình học 10 Nâng cao. Cho ba vec tơ OA, OB, OC có độ dài bằng nhau và ...

Quảng cáo

Đề bài

Cho ba vec tơ \(\overrightarrow {OA} ,\,\overrightarrow {OB} ,\,\overrightarrow {OC} \) có độ dài bằng nhau và \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow 0 \). Tính các góc \(AOB, BOC,COA.\)

Phương pháp giải - Xem chi tiết

Nhận xét tính chất của tam giác ABC, từ đó suy ra số đo các góc.

Lời giải chi tiết

Vì ba vec tơ \(\overrightarrow {OA} ,\,\overrightarrow {OB} ,\,\overrightarrow {OC} \) có độ dài bằng nhau nên OA=OB=OC hay \(O\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

Vì  \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow 0 \) nên \(O\) là trọng tâm tam giác \(ABC\).

Suy ra \(ABC\) là tam giác đều.

Vậy các góc \(AOB, BOC, COA\) đều bằng 1200.

Loigiaihay.com

Quảng cáo
list
close
Gửi bài Hỏi bài