Bài 13 trang 15 SGK Toán 9 tập 2

Giải bài 13 trang 15 SGK Toán 9 tập 2. Giải các hệ phương trình sau bằng phương pháp thế:

Quảng cáo

Đề bài

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\left\{\begin{matrix} 3x - 2y = 11 & & \\ 4x - 5y = 3& & \end{matrix}\right.\);          b) \(\left\{\begin{matrix} \dfrac{x}{2}- \dfrac{y}{3} = 1& & \\ 5x - 8y = 3& & \end{matrix}\right.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Rút \(y\) từ phương trình thứ nhất \(3x - 2y = 11\) rồi thế vào phương trình thứ hai ta được phương trình ẩn \(x.\)  Giải phương trình này ta tìm được \(x,\) từ đó suy ra \(y.\)

b) Rút \(x\) từ phương trình thứ nhất \(\dfrac{x}{2} - \dfrac{y}{3} = 1\) rồi thế vào phương trình thứ hai ta được phương trình ẩn \(y.\)  Giải phương trình này ta tìm được \(y,\) từ đó suy ra \(x.\)

Lời giải chi tiết

a) Ta có:

\(\left\{ \matrix{
3x - 2y = 11 \hfill \cr
4x - 5y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2y = 3x - 11 \hfill \cr
4x - 5y = 3 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
y = \dfrac{3x - 11}{2}\  (1) \hfill \cr
4x - 5.\dfrac{3x - 11}{ 2} = 3 \  (2) \hfill \cr} \right.\)

Giải phương trình \((2)\):

\(4x - 5.\dfrac{3x - 11}{ 2} = 3\)

\(\Leftrightarrow 4x - \dfrac{15x - 55}{ 2} = 3\)

\(\Leftrightarrow \dfrac{4x.2}{2} - \dfrac{15x - 55}{ 2} = \dfrac{3.2}{2}\)

\(\Leftrightarrow \dfrac{8x}{2} - \dfrac{15x - 55}{2} = \dfrac{6}{2}\)

\(\Leftrightarrow \dfrac{8x - 15x + 55}{2} = \dfrac{6}{2}\)

\(\Leftrightarrow 8x - 15x + 55 = 6\)

\(\Leftrightarrow - 7x = 6 - 55\)

\(\Leftrightarrow  - 7x =  - 49\)

\(\Leftrightarrow x=7\)

Thay \(x=7\) vào phương trình \((1)\), ta được:

\(y = \dfrac{3.7 - 11}{2}=5\)

Vậy hệ có  nghiệm duy nhất là \((7; 5)\).

b) Ta có:

\(\left\{ \matrix{
\dfrac{x}{2} - \dfrac{y}{3} = 1 \hfill \cr
5x - 8y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\dfrac{x }{2} = 1 + \dfrac{y}{3} \hfill \cr
5x - 8y = 3 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x = 2 + \dfrac{2y}{3} \ (1) \hfill \cr
5{\left(2 + \dfrac{2y}{3} \right)} - 8y = 3 \  (2) \hfill \cr} \right.\)

Giải phương trình \((2)\), ta được:

\(5{\left(2 + \dfrac{2y}{3} \right)} - 8y = 3 \)

\( \Leftrightarrow  5.2 + 5. \dfrac{2y}{3}-8y = 3\)

\( \Leftrightarrow  10 + \dfrac{10y}{3} -8y =3 \)

\( \Leftrightarrow  \dfrac{30}{3} +\dfrac{10y}{3} - \dfrac{24y}{3} = \dfrac{9}{3}\)

\( \Leftrightarrow  30+ 10y -24y=9\)

\( \Leftrightarrow  -14y=9-30\)

\( \Leftrightarrow  -14y=-21\)

\( \Leftrightarrow  y=\dfrac{21}{14}\) 

\( \Leftrightarrow y= \dfrac{3}{2}\)

Thay \(y= \dfrac{3}{2}\) vào \((1)\), ta được:

\(x = 2 + \dfrac{2. \dfrac{3}{2}}{3}=2+\dfrac{3}{3}=3.\)

Vậy hệ phương trình có nghiệm duy nhất \({\left(3; \dfrac{3}{2} \right)}.\)

loigiaihay.com

Quảng cáo

Gửi bài