Bài 17 trang 16 SGK Toán 9 tập 2

Giải bài 17 trang 16 SGK Toán 9 tập 2. Giải hệ phương trình sau bằng phương pháp thế.

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải hệ phương trình sau bằng phương pháp thế.

LG a

\(\left\{\begin{matrix} x\sqrt{2}- y \sqrt{3}=1 & & \\ x + y\sqrt{3} = \sqrt{2}& & \end{matrix}\right.\)

Phương pháp giải:

Cho hệ phương trình: \(\left\{\begin{matrix} ax +by =c \ (1) & & \\ a'x+b'y=c' \ (2)  & & \end{matrix}\right.\)

+) Từ phương trình (1), rút \(x\) theo \(y\)   (nếu \(a \ne 0\)), ta được: \(x=\dfrac{c-by}{a}\) (Hoặc có thể rút \(y\) theo \(x\) nếu \(b \ne 0\)).

+) Thế biểu thức vừa tìm được vào phương trình (2) ta được phương trình bậc nhất một ẩn \(y\). Giải phương trình này tìm \(y\).

+) Thế \(y\) vào phương trình (1) tìm được \(x\).

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
x\sqrt 2 - y\sqrt 3 = 1 \hfill \cr 
x + y\sqrt 3 = \sqrt 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x\sqrt 2 - y\sqrt 3 = 1 \hfill \cr 
x = \sqrt 2 - y\sqrt 3 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
\left( {\sqrt 2-y\sqrt 3  } \right)\sqrt 2 - y\sqrt 3 = 1 \ (1) \hfill \cr 
x = \sqrt 2  - y\sqrt 3 \ (2) \hfill \cr}  \right.\)

Giải phương trình \((1)\), ta được:

\(( \sqrt 2 - y\sqrt 3)\sqrt 2 - y\sqrt 3 = 1\)

\( \Leftrightarrow (\sqrt 2)^2  - y\sqrt 3 . \sqrt 2 - y\sqrt 3 = 1 \)

\( \Leftrightarrow 2 - y\sqrt 3 . \sqrt 2 - y\sqrt 3 = 1 \)

\( \Leftrightarrow -y\sqrt 3. \sqrt 2  - y\sqrt 3 = 1 - 2\)  

\(\begin{array}{l}
\Leftrightarrow - y\sqrt 6 - y\sqrt 3 = - 1\\
\Leftrightarrow y\left( {\sqrt 6 + \sqrt 3 } \right) = 1\\
\Leftrightarrow y = \dfrac{1}{{\sqrt 6 + \sqrt 3 }}\\
\Leftrightarrow y = \dfrac{{\sqrt 6 - \sqrt 3 }}{3}\\
\Leftrightarrow y = \dfrac{{\sqrt 3 \left( {\sqrt 2 - 1} \right)}}{3}
\end{array}\) 

Thay \(y\) tìm được vào phương trình \((2)\), ta được:

\(x = \sqrt 2  - \dfrac{\sqrt 3 (\sqrt 2 -1)}{3}.\sqrt 3\)

\( \Leftrightarrow  x=\sqrt 2  - \dfrac{\sqrt 3 .\sqrt 3(\sqrt 2 -1)}{3} \)

\(\Leftrightarrow x=\sqrt 2  - \dfrac{ 3(\sqrt 2 -1)}{3} =\sqrt 2  - (\sqrt 2 -1) \)

\(\Leftrightarrow x=\sqrt 2 -\sqrt 2 +1=1.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là: \( {\left( 1;\dfrac{\sqrt 3 (\sqrt 2 -1)}{3} \right)}\)

LG b

\(\left\{\begin{matrix} x - 2\sqrt{2} y = \sqrt{5}& & \\ x\sqrt{2} + y = 1 - \sqrt{10}& & \end{matrix}\right.\)

Phương pháp giải:

Cho hệ phương trình: \(\left\{\begin{matrix} ax +by =c \ (1) & & \\ a'x+b'y=c' \ (2)  & & \end{matrix}\right.\)

+) Từ phương trình (1), rút \(x\) theo \(y\)   (nếu \(a \ne 0\)), ta được: \(x=\dfrac{c-by}{a}\) (Hoặc có thể rút \(y\) theo \(x\) nếu \(b \ne 0\)).

+) Thế biểu thức vừa tìm được vào phương trình (2) ta được phương trình bậc nhất một ẩn \(y\). Giải phương trình này tìm \(y\).

+) Thế \(y\) vào phương trình (1) tìm được \(x\).

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
x - 2\sqrt 2 y = \sqrt 5 \hfill \cr 
x\sqrt 2 + y = 1 - \sqrt {10} \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = 2\sqrt 2 y + \sqrt 5 \ (1)  \hfill \cr 
\left( {2\sqrt 2 y + \sqrt 5 } \right).\sqrt 2 + y = 1 - \sqrt {10}\ (2)  \hfill \cr}  \right.\)

Giải phương trình \((2)\), ta được:

\(\left( {2\sqrt 2 y + \sqrt 5 } \right).\sqrt 2 + y = 1 - \sqrt {10}\)

\(\Leftrightarrow 2(\sqrt 2 .\sqrt 2)y + \sqrt 5 .\sqrt 2 + y = 1 - \sqrt {10}\)

\(\Leftrightarrow 4y + \sqrt{10}+y=1- \sqrt{10}\)

\(\Leftrightarrow 4y +y=1- \sqrt{10}- \sqrt{10} \) 

\(\Leftrightarrow 5y=1-2 \sqrt{10}\)

\(\Leftrightarrow y=\dfrac{1-2 \sqrt{10}}{5}\) 

Thay \(y=\dfrac{1-2 \sqrt{10}}{5}\) vào \((1)\), ta được:

\(x = 2\sqrt 2 .\dfrac{1-2 \sqrt{10}}{5} + \sqrt 5= \dfrac{2\sqrt 2 -4 \sqrt{20}}{5} + \sqrt 5\)

\(\Leftrightarrow x=\dfrac{2\sqrt 2 -4 .2\sqrt{5}}{5} + \sqrt 5=\dfrac{2\sqrt 2 -8\sqrt{5}+ 5\sqrt 5}{5}\)

\(\Leftrightarrow x=\dfrac{2 \sqrt 2 -3 \sqrt 5}{5}\)

Vậy hệ có nghiệm duy nhất là: \((x; y)\) = \({\left(\dfrac{2\sqrt{2} - 3\sqrt{5}}{5};\dfrac{1 - 2\sqrt{10}}{5}\right)}\)

LG c

\(\left\{\begin{matrix} (\sqrt{2}- 1)x - y = \sqrt{2}& & \\ x + (\sqrt{2}+ 1)y = 1& & \end{matrix}\right.\)

Phương pháp giải:

Cho hệ phương trình: \(\left\{\begin{matrix} ax +by =c \ (1) & & \\ a'x+b'y=c' \ (2)  & & \end{matrix}\right.\)

+) Từ phương trình (1), rút \(x\) theo \(y\)   (nếu \(a \ne 0\)), ta được: \(x=\dfrac{c-by}{a}\) (Hoặc có thể rút \(y\) theo \(x\) nếu \(b \ne 0\)).

+) Thế biểu thức vừa tìm được vào phương trình (2) ta được phương trình bậc nhất một ẩn \(y\). Giải phương trình này tìm \(y\).

+) Thế \(y\) vào phương trình (1) tìm được \(x\).

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
\left( {\sqrt 2 - 1} \right)x - y = \sqrt 2 \hfill \cr 
x + \left( {\sqrt 2 + 1} \right)y = 1 \hfill \cr} \right. \)

\(\left\{ \begin{array}{l}y = \left( {\sqrt 2  - 1} \right)x - \sqrt 2 \,\,\,\,\,\left( 1 \right)\\x + \left( {\sqrt 2  + 1} \right)\left[ {\left( {\sqrt 2  - 1} \right)x - \sqrt 2 } \right] = 1\,\,\,\left( 2 \right)\end{array} \right.\)

Giải phương trình \((2)\), ta được:

\(x + \left( {\sqrt 2 + 1} \right)\left[ { \left( {\sqrt 2 - 1} \right)x} -\sqrt 2 \right] = 1\)

\(\Leftrightarrow  x +  (\sqrt 2 + 1) (\sqrt 2 - 1)x -( \sqrt 2 + 1). \sqrt 2   = 1\)

\(\Leftrightarrow  x +  {\left((\sqrt 2)^2 - 1^2 \right)}x-( 2 + \sqrt 2)  = 1\)

\(\Leftrightarrow x + x  = 1+( 2 + \sqrt 2)\)

\(\Leftrightarrow 2x =3 +\sqrt 2\)

\(\Leftrightarrow x=\dfrac{3+ \sqrt 2}{2}\)

Thay \(x=\dfrac{3+ \sqrt 2}{2}\) vào \((1)\), ta được:

\(y =  \left( {\sqrt 2 - 1} \right).\dfrac{3+ \sqrt 2}{2}  - \sqrt 2\)

\( \Leftrightarrow y= \dfrac{(\sqrt 2 - 1 )(3+ \sqrt 2)}{2}  - \sqrt 2 \)

\( \Leftrightarrow y= \dfrac{3\sqrt 2 -3 +2 -\sqrt 2}{2}  - \sqrt 2 \)

\( \Leftrightarrow y= \dfrac{2\sqrt 2 -1}{2}  - \sqrt 2 \)

\( \Leftrightarrow y= \dfrac{2\sqrt 2 -1-2\sqrt 2}{2}  \)

\( \Leftrightarrow y= \dfrac{-1}{2}  \)

Vậy hệ có nghiệm \((x; y) = {\left(\dfrac{3 + \sqrt{2}}{2};\dfrac{-1}{2} \right)}\)

Loigiaihay.com

Quảng cáo

Gửi bài