Bài 17 trang 16 SGK Toán 9 tập 2Giải hệ phương trình sau bằng phương pháp thế. Quảng cáo
Video hướng dẫn giải Giải hệ phương trình sau bằng phương pháp thế. LG a \(\left\{\begin{matrix} x\sqrt{2}- y \sqrt{3}=1 & & \\ x + y\sqrt{3} = \sqrt{2}& & \end{matrix}\right.\) Phương pháp giải: Cho hệ phương trình: \(\left\{\begin{matrix} ax +by =c \ (1) & & \\ a'x+b'y=c' \ (2) & & \end{matrix}\right.\) +) Từ phương trình (1), rút \(x\) theo \(y\) (nếu \(a \ne 0\)), ta được: \(x=\dfrac{c-by}{a}\) (Hoặc có thể rút \(y\) theo \(x\) nếu \(b \ne 0\)). +) Thế biểu thức vừa tìm được vào phương trình (2) ta được phương trình bậc nhất một ẩn \(y\). Giải phương trình này tìm \(y\). +) Thế \(y\) vào phương trình (1) tìm được \(x\). Lời giải chi tiết: Ta có: \(\left\{ \matrix{ \(\Leftrightarrow \left\{ \matrix{ Giải phương trình \((1)\), ta được: \(( \sqrt 2 - y\sqrt 3)\sqrt 2 - y\sqrt 3 = 1\) \( \Leftrightarrow (\sqrt 2)^2 - y\sqrt 3 . \sqrt 2 - y\sqrt 3 = 1 \) \( \Leftrightarrow 2 - y\sqrt 3 . \sqrt 2 - y\sqrt 3 = 1 \) \( \Leftrightarrow -y\sqrt 3. \sqrt 2 - y\sqrt 3 = 1 - 2\) \(\begin{array}{l} Thay \(y\) tìm được vào phương trình \((2)\), ta được: \(x = \sqrt 2 - \dfrac{\sqrt 3 (\sqrt 2 -1)}{3}.\sqrt 3\) \( \Leftrightarrow x=\sqrt 2 - \dfrac{\sqrt 3 .\sqrt 3(\sqrt 2 -1)}{3} \) \(\Leftrightarrow x=\sqrt 2 - \dfrac{ 3(\sqrt 2 -1)}{3} =\sqrt 2 - (\sqrt 2 -1) \) \(\Leftrightarrow x=\sqrt 2 -\sqrt 2 +1=1.\) Vậy hệ phương trình đã cho có nghiệm duy nhất là: \( {\left( 1;\dfrac{\sqrt 3 (\sqrt 2 -1)}{3} \right)}\) LG b \(\left\{\begin{matrix} x - 2\sqrt{2} y = \sqrt{5}& & \\ x\sqrt{2} + y = 1 - \sqrt{10}& & \end{matrix}\right.\) Phương pháp giải: Cho hệ phương trình: \(\left\{\begin{matrix} ax +by =c \ (1) & & \\ a'x+b'y=c' \ (2) & & \end{matrix}\right.\) +) Từ phương trình (1), rút \(x\) theo \(y\) (nếu \(a \ne 0\)), ta được: \(x=\dfrac{c-by}{a}\) (Hoặc có thể rút \(y\) theo \(x\) nếu \(b \ne 0\)). +) Thế biểu thức vừa tìm được vào phương trình (2) ta được phương trình bậc nhất một ẩn \(y\). Giải phương trình này tìm \(y\). +) Thế \(y\) vào phương trình (1) tìm được \(x\). Lời giải chi tiết: Ta có: \(\left\{ \matrix{ \(\Leftrightarrow \left\{ \matrix{ Giải phương trình \((2)\), ta được: \(\left( {2\sqrt 2 y + \sqrt 5 } \right).\sqrt 2 + y = 1 - \sqrt {10}\) \(\Leftrightarrow 2(\sqrt 2 .\sqrt 2)y + \sqrt 5 .\sqrt 2 + y = 1 - \sqrt {10}\) \(\Leftrightarrow 4y + \sqrt{10}+y=1- \sqrt{10}\) \(\Leftrightarrow 4y +y=1- \sqrt{10}- \sqrt{10} \) \(\Leftrightarrow 5y=1-2 \sqrt{10}\) \(\Leftrightarrow y=\dfrac{1-2 \sqrt{10}}{5}\) Thay \(y=\dfrac{1-2 \sqrt{10}}{5}\) vào \((1)\), ta được: \(x = 2\sqrt 2 .\dfrac{1-2 \sqrt{10}}{5} + \sqrt 5= \dfrac{2\sqrt 2 -4 \sqrt{20}}{5} + \sqrt 5\) \(\Leftrightarrow x=\dfrac{2\sqrt 2 -4 .2\sqrt{5}}{5} + \sqrt 5=\dfrac{2\sqrt 2 -8\sqrt{5}+ 5\sqrt 5}{5}\) \(\Leftrightarrow x=\dfrac{2 \sqrt 2 -3 \sqrt 5}{5}\) Vậy hệ có nghiệm duy nhất là: \((x; y)\) = \({\left(\dfrac{2\sqrt{2} - 3\sqrt{5}}{5};\dfrac{1 - 2\sqrt{10}}{5}\right)}\) LG c \(\left\{\begin{matrix} (\sqrt{2}- 1)x - y = \sqrt{2}& & \\ x + (\sqrt{2}+ 1)y = 1& & \end{matrix}\right.\) Phương pháp giải: Cho hệ phương trình: \(\left\{\begin{matrix} ax +by =c \ (1) & & \\ a'x+b'y=c' \ (2) & & \end{matrix}\right.\) +) Từ phương trình (1), rút \(x\) theo \(y\) (nếu \(a \ne 0\)), ta được: \(x=\dfrac{c-by}{a}\) (Hoặc có thể rút \(y\) theo \(x\) nếu \(b \ne 0\)). +) Thế biểu thức vừa tìm được vào phương trình (2) ta được phương trình bậc nhất một ẩn \(y\). Giải phương trình này tìm \(y\). +) Thế \(y\) vào phương trình (1) tìm được \(x\). Lời giải chi tiết: Ta có: \(\left\{ \matrix{ \(\left\{ \begin{array}{l}y = \left( {\sqrt 2 - 1} \right)x - \sqrt 2 \,\,\,\,\,\left( 1 \right)\\x + \left( {\sqrt 2 + 1} \right)\left[ {\left( {\sqrt 2 - 1} \right)x - \sqrt 2 } \right] = 1\,\,\,\left( 2 \right)\end{array} \right.\) Giải phương trình \((2)\), ta được: \(x + \left( {\sqrt 2 + 1} \right)\left[ { \left( {\sqrt 2 - 1} \right)x} -\sqrt 2 \right] = 1\) \(\Leftrightarrow x + (\sqrt 2 + 1) (\sqrt 2 - 1)x -( \sqrt 2 + 1). \sqrt 2 = 1\) \(\Leftrightarrow x + {\left((\sqrt 2)^2 - 1^2 \right)}x-( 2 + \sqrt 2) = 1\) \(\Leftrightarrow x + x = 1+( 2 + \sqrt 2)\) \(\Leftrightarrow 2x =3 +\sqrt 2\) \(\Leftrightarrow x=\dfrac{3+ \sqrt 2}{2}\) Thay \(x=\dfrac{3+ \sqrt 2}{2}\) vào \((1)\), ta được: \(y = \left( {\sqrt 2 - 1} \right).\dfrac{3+ \sqrt 2}{2} - \sqrt 2\) \( \Leftrightarrow y= \dfrac{(\sqrt 2 - 1 )(3+ \sqrt 2)}{2} - \sqrt 2 \) \( \Leftrightarrow y= \dfrac{3\sqrt 2 -3 +2 -\sqrt 2}{2} - \sqrt 2 \) \( \Leftrightarrow y= \dfrac{2\sqrt 2 -1}{2} - \sqrt 2 \) \( \Leftrightarrow y= \dfrac{2\sqrt 2 -1-2\sqrt 2}{2} \) \( \Leftrightarrow y= \dfrac{-1}{2} \) Vậy hệ có nghiệm \((x; y) = {\left(\dfrac{3 + \sqrt{2}}{2};\dfrac{-1}{2} \right)}\) Loigiaihay.com
Quảng cáo
|