Bài 15 trang 15 SGK Toán 9 tập 2

Giải bài 15 trang 15 SGK Toán 9 tập 2. Giải hệ phương trình

Quảng cáo

➡ Góp ý Loigiaihay.com, nhận quà liền tay! Góp ý ngay!💘

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải hệ phương trình \(\left\{\begin{matrix} x + 3y = 1 & & \\ (a^{2} + 1)x + 6y = 2a & & \end{matrix}\right.\) trong mỗi trường hợp sau:

LG a

\(a = -1\)

Phương pháp giải:

+) Thay từng giá trị của \(a\) vào hệ phương trình đã cho.

+) Dùng quy tắc thế biến đổi hệ phương trình thu được để có một hệ phương trình mới trong đó có một phương trình một ẩn.

+) Giải phương trình một ẩn vừa có rồi suy ra nghiệm của hệ.

Lời giải chi tiết:

Thay \(a = -1\) vào hệ, ta được:

\(\left\{\begin{matrix} x + 3y = 1 & & \\ {\left((-1)^2+1 \right)}x+ 6y = 2.(-1) & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} x + 3y = 1 & & \\ 2x+ 6y = -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x + 3y = 1 & & \\ x+ 3y = -1 & & \end{matrix}\right.  \Leftrightarrow \left\{\begin{matrix} x  = 1 -3y  & & \\ (1-3y)+ 3y = -1 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x  = 1 -3y & & \\  1 = -1 (vô \ lý )& & \end{matrix}\right.\)

Vậy hệ phương trình trên vô nghiệm.

LG b

\(a = 0\)

Phương pháp giải:

+) Thay từng giá trị của \(a\) vào hệ phương trình đã cho.

+) Dùng quy tắc thế biến đổi hệ phương trình thu được để có một hệ phương trình mới trong đó có một phương trình một ẩn.

+) Giải phương trình một ẩn vừa có rồi suy ra nghiệm của hệ.

Lời giải chi tiết:

Thay \(a = 0\) vào hệ, ta được:

\(\left\{ \matrix{
x + 3y = 1 \hfill \cr 
\left( {0 + 1} \right)x + 6y = 2.0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr 
x + 6y = 0 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr 
x = - 6y \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
- 6y + 3y = 1 \hfill \cr 
x = - 6y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
- 3y = 1 \hfill \cr 
x = - 6y \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr 
x = - 6y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr 
x = - 6. \dfrac{ - 1}{3} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr 
x = 2 \hfill \cr} \right.\)

Hệ phương trình có nghiệm \( {\left(2; -\dfrac{1}{3} \right)} \).

LG c

\(a = 1\)

Phương pháp giải:

+) Thay từng giá trị của \(a\) vào hệ phương trình đã cho.

+) Dùng quy tắc thế biến đổi hệ phương trình thu được để có một hệ phương trình mới trong đó có một phương trình một ẩn.

+) Giải phương trình một ẩn vừa có rồi suy ra nghiệm của hệ.

Lời giải chi tiết:

Thay \(a = 1\) vào hệ, ta được:

\(\left\{ \matrix{
x + 3y = 1 \hfill \cr 
({1^2} + 1)x + 6y = 2.1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr 
2x + 6y = 2 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr 
x + 3y = 1 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 1 - 3y\\1 - 3y + 3y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 - 3y\\1 = 1\left( {luôn\,đúng} \right)\end{array} \right.\)

 Vậy  hệ phương trình có vô số nghiệm \(\left\{ \begin{array}{l}x = 1 - 3y\\y \in \mathbb{R}\end{array} \right.\)

Loigiaihay.com

Quảng cáo

Gửi bài tập - Có ngay lời giải