-
Lý thuyết Vecto và các phép toán trong không gian
Bài 1. Vecto và các phép toán trong không gian 1. Vecto trong không gian
Xem chi tiết -
Bài 1 trang 50
Cho hình hộp ABCD.A′B′C′D′. Chứng minh rằng: a) \(\overrightarrow {AB} + \overrightarrow {B'C'} + \overrightarrow {DD'} = \overrightarrow {AC'} \) b) \(\overrightarrow {DB'} + \overrightarrow {D'D} + \overrightarrow {BD'} = \overrightarrow {BB'} \) c) \(\overrightarrow {AC} + \overrightarrow {BA'} + \overrightarrow {DB} + \overrightarrow {C'D} = \overrightarrow 0 \)
Xem chi tiết -
Bài 2 trang 50
Cho hình bình hành ABCD. Gọi S là một điểm không thuộc mặt phẳng chứa hình bình hành. Chứng minh rằng \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \)
Xem chi tiết -
Bài 3 trang 50
Ba lực có điểm đặt tại một đỉnh của hình lập phương, cùng phương với ba cạnh và cùng có cường độ là 5N. Tính cường độ của hợp lực.
Xem chi tiết -
Bài 4 trang 51
Cho hình chóp S.ABCD. Gọi I là trọng tâm của tam giác ABC và J là trọng tâm tam giác ADC. Chứng minh rằng (2overrightarrow {SA} + overrightarrow {SB} + 2overrightarrow {SC} + overrightarrow {SD} = 3(overrightarrow {SI} + overrightarrow {SJ} ))
Xem chi tiết -
Bài 5 trang 51
Cho hình lăng trụ tam giác ABC.A′B′C′ có (overrightarrow {AA'} = overrightarrow a ,overrightarrow {AB} = overrightarrow b ,overrightarrow {AC} = overrightarrow c ). Chứng minh rằng (overrightarrow {B'C} = overrightarrow c - overrightarrow a - overrightarrow b ) và (overrightarrow {BC'} = overrightarrow a - overrightarrow b + overrightarrow c )
Xem chi tiết