🔥 2K8 CHÚ Ý! MỞ ĐẶT CHỖ SUN 2026 - LUYỆN THI TN THPT - ĐGNL - ĐGTD

🍀 ƯU ĐÃI -70%! XUẤT PHÁT SỚM‼️

Chỉ còn 2 ngày
Xem chi tiết

Bài 1 trang 82 SGK Đại số và Giải tích 11

Chứng minh rằng

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng với nN, ta có đẳng thức:

LG a

2+5+8+....+3n1=n(3n+1)2

Phương pháp giải:

Vận dụng phương pháp chứng minh quy nạp toán học.

Bước 1: Chứng minh mệnh đề đúng với n=1.

Bước 2: Giả sử đẳng thức đúng đến n=k1 (giả thiết quy nạp). Chứng minh đẳng thức đúng đến n=k+1.

Khi đó đẳng thức đúng với mọi nN.

Lời giải chi tiết:

Với n=1, vế trái chỉ có một số hạng là 2, vế phải bằng 1.(3.1+1)2=2.

Do đó hệ thức a) đúng với n=1.

Đặt vế trái bằng Sn

Giả sử đẳng thức a) đúng với n=k1, tức là

Sk=2+5+8++3k1 =k(3k+1)2

Ta phải chứng minh rằng a) cũng đúng với n=k+1, nghĩa là phải chứng minh

Sk+1=2+5+8+.+3k1+(3(k+1)1) =(k+1)(3(k+1)+1)2

Thật vậy, từ giả thiết quy nạp, ta có:

Sk+1=[2+5+8+.+3k1]+(3(k+1)1)

=Sk+3k+2

=k(3k+1)2+3k+2

=3k2+k+6k+42

=3k2+7k+42 =(k+1)(3k+4)2 =(k+1)(3k+3+1)2 =(k+1)[3(k+1)+1]2

(điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức a) đúng với mọi nN

Quảng cáo

Lộ trình SUN 2026

LG b

12+14+18+...+12n=2n12n

Lời giải chi tiết:

Với n=1, vế trái bằng 12, vế phải bằng 12, do đó hệ thức đúng với n=1.

Đặt vế trái bằng Sn.

Giả sử hệ thức b) đúng với n=k1, tức là

Sk=12+14+18+...+12k =2k12k

Ta phải chứng minh Sk+1=2k+112k+1.

Thật vậy, từ giả thiết quy nạp, ta có:

Sk+1=12+14+18+...+12k+12k+1

=Sk+12k+1

=2k12k+12k+1 =2(2k1)+12k+1 =2k+12+12k+1=2k+112k+1

(điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi nN

LG c

12+22+32+...+n2 =n(n+1)(2n+1)6

Lời giải chi tiết:

Với n=1, vế trái bằng 1, vế phải bằng 1(1+1)(2+1)6=1 nên hệ thức c) đúng với n=1.

Đặt vế trái bằng Sn.

Giả sử hệ thức c) đúng với n=k1, tức là

Sk=12+22+32+...+k2 =k(k+1)(2k+1)6

Ta phải chứng minh Sk+1=(k+1)(k+2)(2(k+1)+1)6

Thật vậy, từ giả thiết quy nạp ta có: 

Sk+1=12+22+32+...+k2+(k+1)2

=Sk+(k+1)2

=k(k+1)(2k+1)6+(k+1)2

=k(k+1)(2k+1)+6(k+1)26=(k+1)[k(2k+1)+6(k+1)]6=(k+1)(2k2+k+6k+6)6=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)(k+2)(2k+2+1)6=(k+1)(k+2)[2(k+1)+1]6

(đpcm)

Vậy theo nguyên lí quy nạp toán học, hệ thức c) đúng với mọi  nN.

Loigiaihay.com

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

close