Trả lời câu hỏi Bài 1 trang 66 SGK Toán 9 Tập 1

Giải Trả lời câu hỏi Bài 1 trang 66 SGK Toán 9 Tập 1. Xét hình 1. Chứng minh

Quảng cáo

➡ Góp ý Loigiaihay.com, nhận quà liền tay! Góp ý ngay!💘

Đề bài

Xét hình 1. Chứng minh \(\Delta AHB \sim \Delta CHA\). Từ đó suy ra hệ thức (2) là \(h^2=b'c'.\)


                            Hình 1


Phương pháp giải - Xem chi tiết

Sử dụng trường hợp đồng dạng góc-góc để chứng minh hai tam giác \(ABH\) và \(CAH\) đồng dạng.

Từ đó suy ra tỉ lệ cạnh và hệ thức cần tìm. 

Lời giải chi tiết

Ta có \(\widehat {BAH} + \widehat {CAH}=90^0\) và \(\widehat {CAH} + \widehat {ACH}=90^0\) (do tam giác \(AHC\) vuông tại \(H\))

Do đó \(\widehat {BAH} = \widehat {ACH}\) (cùng phụ \(\widehat {CAH}\))

Xét  \(\Delta ABH\) và  \(\Delta CAH\) có:

\(\widehat {AHB} = \widehat {AHC} = {90^o}\)

\(\widehat {BAH} = \widehat {ACH}\) (cmt )

\( \Rightarrow \Delta ABH \sim \Delta CAH\,\,\left( {g.g} \right)\) 

\( \displaystyle \Rightarrow {{AH} \over {CH}} = {{BH} \over {AH}} \Rightarrow A{H^2} = BH\,\,hay\,\,{h^2} = b' \times c'\)

Loigiaihay.com

Quảng cáo

Gửi bài tập - Có ngay lời giải