Trừ hai phân thứcTrừ hai phân thức cùng mẫu như thế nào? Trừ hai phân thức khác mẫu như thế nào? Phân thức đối là gì? Quảng cáo
1. Lý thuyết - Quy tắc trừ hai phân thức cùng mẫu thức: Muốn trừ hai phân thức có cùng mẫu thức, ta trừ tử của phân thức bị trừ và giữ nguyên mẫu : \(\frac{A}{M} - \frac{B}{M} = \frac{{A - B}}{M}\); - Quy tắc trừ hai phân thức khác mẫu thức: Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi đưa về quy tắc trừ hai phân thức có cùng mẫu thức. - Phân thức đối: + Phân thức đối của phân thức \(\frac{A}{B}\) kí hiệu là \( - \frac{A}{B}\). Ta có : \(\frac{A}{B} + \left( { - \frac{A}{B}} \right) = 0.\) + Phân thức đối của phân thức \(\frac{A}{B}\) là \(\frac{{ - A}}{B}\) hay\( - \frac{A}{B}\). + Ta có: \( - \left( { - \frac{A}{B}} \right) = \frac{A}{B}\). Phép trừ phân thức có thể chuyển thành phép cộng với phân thức đối: \(\frac{A}{B} - \frac{C}{D} = \frac{A}{B} + \left( { - \frac{C}{D}} \right)\) 2. Ví dụ minh họa
Ví dụ 1: \(\frac{{2x - 1}}{{x - 1}} - \frac{{x - 2}}{{x - 1}} = \frac{{2x - 1 - (x - 2)}}{{x - 1}} = \frac{{2x - 1 - x + 2}}{{x - 1}} = \frac{{x + 1}}{{x - 1}}\). Ví dụ 2: \(\begin{array}{l}\frac{2}{{x + 1}} - \frac{2}{{1 - x}} = \frac{{2\left( {1 - x} \right)}}{{\left( {x + 1} \right)\left( {1 - x} \right)}} - \frac{{2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {1 - x} \right)}}\\ = \frac{{2 - 2x - 2x - 2}}{{\left( {x + 1} \right)\left( {1 - x} \right)}} = \frac{{ - 4x}}{{1 - {x^2}}}\end{array}\)
Quảng cáo
|