Lý thuyết Phương trình bậc nhất hai ẩn.

Phương trình bậc nhất hai ẩn x, y là hệ thức dạng:

Quảng cáo

1. Các kiến thức cần nhớ

Khái niệm phương trình bậc nhất hai ẩn

+) Phương trình bậc nhất hai ẩn là phương trình có dạng ax+by=cax+by=c

Trong đó a,b,c  là những số cho trước a0  hoặc b0 .

- Nếu các số thực x0,y0 thỏa mãn ax+by=c thì cặp số (x0,y0) được gọi là nghiệm của phương trình ax+by=c.

- Trong mặt phẳng tọa độ Oxy , mỗi nghiệm (x0,y0) của phương trình ax+by=c được biểu diễn bới điểm có tọa độ (x0,y0).

Tập nghiệm của phương trình bậc nhất hai ẩn

Phương trình bậc nhất hai ẩn ax+by=c luôn có vô số nghiệm.

Tập nghiệm của phương trình được biểu diễn bởi đường thẳng d:ax+by=c.

+) Nếu a0b=0 thì phương trình có nghiệm  {x=cayR

và đường thẳng d  song song hoặc trùng với trục tung.

+) Nếu a=0b0 thì phương trình có nghiệm  {xRy=cb

và đường thẳng d  song song hoặc trùng với trục hoành.

+) Nếu a0b0 thì phương trình có nghiệm  {xRy=abx+cb

và đường thẳng d  là đồ thị hàm số y=abx+cb

2. Các dạng toán thường gặp

Dạng 1: Tìm điều kiện của tham số để một cặp số cho trước là nghiệm của phương trình bậc nhất hai ẩn.

Phương pháp:

Nếu cặp số thực (x0,y0)thỏa mãn ax+by=c thì nó được gọi là nghiệm của phương trình ax+by=c.

Dạng 2: Viết công thức nghiệm tổng quát của phương trình bậc nhất hai ẩn. Biểu diễn tập nghiệm trên hệ trục tọa độ.

Phương pháp:

Xét phương trình bậc nhất hai ẩn ax+by=c.

1. Để viết công thức nghiệm tổng quát của phương trình, trước tiên ta biểu diễn x theo y ( hoặc y theo x) rồi đưa ra công thức nghiệm tổng quát.

2. Để biểu diễn tập nghiệm của phương trình trên mặt phẳng tọa độ, ta vẽ đường thẳng d có phương trình ax+by=c.

Dạng 3: Tìm điều kiện của tham số để đường thẳng ax+by=c thỏa mãn điều kiện cho trước

Phương pháp:

Ta có thể sử dụng một số lưu ý sau đây khi giải dạng toán này:

1. Nếu a0b=0 thì phương trình đường thẳng d:ax+by=c có dạng d:x=ca.  Khi đó d song song hoặc trùng với Oy .

2. Nếu a=0b0 thì phương trình đường thẳng d:ax+by=c có dạng d:y=cb.  Khi đó d song song hoặc trùng với Ox .

3. Đường thẳng d:ax+by=c đi qua điểm M(x0,y0) khi và chỉ khi ax0+by0=c.

Dạng 4: Tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn

Phương pháp:

Để tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn ax+by=c, ta làm như sau:

Cách 1:

Bước 1: Rút gọn phương trình, chú ý đến tính chia hết của các ẩn
Bước 2:  Biểu thị ẩn mà hệ số của nó có giá trị tuyệt đối nhỏ (chẳng hạn x ) theo ẩn kia.
Bước 3:  Tách riêng giá trị nguyên ở biểu thức của x
Bước 4:  Đặt điều kiện để phân bố trong biểu thức của x bằng một số nguyên t, ta được một phương trình bậc nhất hai ẩn y và t
-  Cứ tiếp tục như trên cho đến khi các ần đều được biểu thị dưới dạng một đa thức với các hệ số nguyên.

Cách 2:

Bước 1. Tìm một nghiệm nguyên (x0,y0) của phương trình.

Bước 2. Đưa phương trình về dạng a(xx0)+b(yy0)=0 từ đó dễ dàng tìm được các nghiệm nguyên của phương trình đã cho.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close