Bài 2 trang 7 SGK Toán 9 tập 2

Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và vẽ đường thẳng biểu diễn tập nghiệm của nó:

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và vẽ đường thẳng biểu diễn tập nghiệm của nó:

LG a

3xy=23xy=2

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu a0a0 thì tìm xx theo yy. Khi đó công thức nghiệm là:

{x=cbyayR

+) Nếu b0 thì tìm y theo x. Khi đó công thức nghiệm là:

{y=caxbxR

2) Cách vẽ đường thẳng có phương trình: ax+by=c.

+) Nếu a0, b0 thì vẽ đường thẳng y=abx+cb

+) Nếu a0, b=0 thì vẽ đường thẳng x=ca song song hoặc trùng với trục tung.

+) Nếu a=0, b0 thì vẽ đường thẳng y=ca song song hoặc trùng với trục hoành.

Lời giải chi tiết:

Ta có phương trình 3xy=2y=3x2. Nghiệm tổng quát của phương trình là:   

{xRy=3x2

* Vẽ đường thẳng biểu diễn tập nghiệm của phương trình y=3x2 :

Cho x=0y=2 ta được A(0;2).

Cho y=0x=23 ta được B(23;0).

Biểu diễn cặp điểm A(0;2)B(23;0) trên hệ trục tọa độ và đường thẳng AB chính là tập nghiệm của phương trình 3xy=2.

LG b

x+5y=3

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu a0 thì tìm x theo y. Khi đó công thức nghiệm là:

{x=cbyayR

+) Nếu b0 thì tìm y theo x. Khi đó công thức nghiệm là:

{y=caxbxR

2) Cách vẽ đường thẳng có phuương trình: ax+by=c.

+) Nếu a0, b0 thì vẽ đường thẳng y=abx+cb

+) Nếu a0, b=0 thì vẽ đường thẳng x=ca song song hoặc trùng với trục tung.

+) Nếu a=0, b0 thì vẽ đường thẳng y=ca song song hoặc trùng với trục hoành.

Lời giải chi tiết:

Ta có phương trình x+5y=3x=5y+3. Nghiệm tổng quát của phương trình là:

{x=5y+3yR 

* Vẽ đường thẳng biểu diễn tập nghiệm của phương trình x=5y+3 :

+) Cho  x=0y=35 ta được C(0;35).

+) Cho y=0x=3 ta được D(3;0).

Biểu diễn cặp điểm C(0;35), D(3;0) trên hệ trục toa độ và đường thẳng CD chính là tập nghiệm của phương trình.

LG c

4x3y=1

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu a0 thì tìm x theo y. Khi đó công thức nghiệm là:

{x=cbyayR

+) Nếu b0 thì tìm y theo x. Khi đó công thức nghiệm là:

{y=caxbxR

2) Cách vẽ đường thẳng có phuương trình: ax+by=c.

+) Nếu a0, b0 thì vẽ đường thẳng y=abx+cb

+) Nếu a0, b=0 thì vẽ đường thẳng x=ca song song hoặc trùng với trục tung.

+) Nếu a=0, b0 thì vẽ đường thẳng y=ca song song hoặc trùng với trục hoành.

Lời giải chi tiết:

Ta có phương trình 4x3y=13y=4x+1y=43x+13. Nghiệm tổng quát của phương trình là:

{xRy=43x+13

* Vẽ đường thẳng biểu diễn tập nghiệm của phương trình 4x3y=1

+) Cho x=0y=13 ta được A(0;13)

+) Cho y=0x=14 ta được B(14;0)

Biểu diễn cặp điểm A(0;13)B(14;0) trên hệ tọa độ và đường thẳng AB chính là tập nghiệm của phương trình 4x3y=1.

LG d

x+5y=0

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu a0 thì tìm x theo y. Khi đó công thức nghiệm là:

{x=cbyayR

+) Nếu b0 thì tìm y theo x. Khi đó công thức nghiệm là:

{y=caxbxR

2) Cách vẽ đường thẳng có phuương trình: ax+by=c.

+) Nếu a0, b0 thì vẽ đường thẳng y=abx+cb

+) Nếu a0, b=0 thì vẽ đường thẳng x=ca song song hoặc trùng với trục tung.

+) Nếu a=0, b0 thì vẽ đường thẳng y=ca song song hoặc trùng với trục hoành.

Lời giải chi tiết:

Ta có phương trình x+5y=0x=5y. Nghiệm tổng quát của phương trình là:

{x=5yyR

* Vẽ đường thẳng biểu diễn tập nghiệm của phương trình x+5y=0

+) Cho x=0y=0 ta được O(0;0)

+) Cho y=1x=5 ta được A(5;1).

Biểu diễn cặp điểm O(0;0)A(5;1) trên hệ tọa độ và đường thẳng OA chính là tập nghiệm của phương trình x+5y=0.

 

LG e

4x+0y=2

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu a0 thì tìm x theo y. Khi đó công thức nghiệm là:

{x=cbyayR

+) Nếu b0 thì tìm y theo x. Khi đó công thức nghiệm là:

{y=caxbxR

2) Cách vẽ đường thẳng có phuương trình: ax+by=c.

+) Nếu a0, b0 thì vẽ đường thẳng y=abx+cb

+) Nếu a0, b=0 thì vẽ đường thẳng x=ca song song hoặc trùng với trục tung.

+) Nếu a=0, b0 thì vẽ đường thẳng y=ca song song hoặc trùng với trục hoành.

Lời giải chi tiết:

Ta có phương trình 4x+0y=24x=2x=12. Nghiệm tổng quát của phương trình là:

{x=12yR

Tập nghiệm là đường thẳng x=12 đi qua A(12;0) và song song với trục tung.

LG f

0x+2y=5

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu a0 thì tìm x theo y. Khi đó công thức nghiệm là:

{x=cbyayR

+) Nếu b0 thì tìm y theo x. Khi đó công thức nghiệm là: 

{y=caxbxR

2) Cách vẽ đường thẳng có phuương trình: ax+by=c.

+) Nếu a0, b0 thì vẽ đường thẳng y=abx+cb

+) Nếu a0, b=0 thì vẽ đường thẳng x=ca song song hoặc trùng với trục tung.

+) Nếu a=0, b0 thì vẽ đường thẳng y=ca song song hoặc trùng với trục hoành.

Lời giải chi tiết:

0x+2y=52y=5y=52. Nghiệm tổng quát của phương trình là:

{xRy=52

Tập nghiệm là đường thẳng y=52 đi qua A(0;52) và song song với trục hoành.

Loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com

>> Chi tiết khoá học xem: TẠI ĐÂY

Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

close