Giải mục 3 trang 40 SGK Toán 9 tập 1 - Chân trời sáng tạoMột chiếc thang dài 5m tựa vào bức tường như Hình 3. a) Nếu chân thang cách chân tường x (m) thì đỉnh thang ở độ cao bao nhiêu so với chân tường? b) Tính độ cao trên khi x nhận giá trị lần lượt là 1;2;3;4. Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
HĐ2 Video hướng dẫn giải Trả lời câu hỏi Hoạt động 2 trang 40 SGK Toán 9 Chân trời sáng tạo Một chiếc thang dài 5m tựa vào bức tường như Hình 3. a) Nếu chân thang cách chân tường x (m) thì đỉnh thang ở độ cao bao nhiêu so với chân tường? b) Tính độ cao trên khi x nhận giá trị lần lượt là 1;2;3;4. Phương pháp giải: Áp dụng định lý Pythagore vào tam giác vuông tạo bởi chiếc thang và bức tường. Thay lần lượt từng giá trị x để tính độ cao. Lời giải chi tiết: a) Đỉnh thang có độ cao là: \(\sqrt {{5^2} - {x^2}} \) (m). b) Khi x = 1 thì độ cao là \(\sqrt {{5^2} - {1^2}} = 2\sqrt 6 \) (m) Khi x = 2 thì độ cao là \(\sqrt {{5^2} - {2^2}} = \sqrt {21} \)(m) Khi x = 3 thì độ cao là \(\sqrt {{5^2} - {3^2}} = 4\)(m) Khi x = 4 thì độ cao là \(\sqrt {{5^2} - {4^2}} = 3\)(m) TH7 Video hướng dẫn giải Trả lời câu hỏi Thực hành 7 trang 40 SGK Toán 9 Chân trời sáng tạo Với giá trị nào của x thì biểu thức A = \(\sqrt {3x + 6} \) xác định? Tính giá trị của A khi x = 5 (kết quả làm tròn đến chữ số thập phân thứ hai). Phương pháp giải: Tìm ĐKXĐ của \(\sqrt A \) khi và chỉ khi \(A \ge 0\) Thay x = 5 vào biểu thức A để tính Lời giải chi tiết: ĐKXĐ: 3x + 6 \( \ge \) 0 suy ra x \( \ge \) - 2 Thay x = 5 vào A = \(\sqrt {3x + 6} \), ta được: A = \(\sqrt {3.5 + 6} = \sqrt {21} \approx 4,58\) TH8 Video hướng dẫn giải Trả lời câu hỏi Thực hành 8 trang 40 SGK Toán 9 Chân trời sáng tạo Cho biểu thức P = \(\sqrt {{a^2} - {b^2}} \). Tính giá trị của P khi: a) a = 5; b = 0 b) a = 5; b = -5 c) a = 2; b = -4 Phương pháp giải: Thay lần lượt a và b vào biểu thức P để tính. Lời giải chi tiết: a) Thay a = 5; b = 0 vào P = \(\sqrt {{a^2} - {b^2}} \), ta được: P = \(\sqrt {{5^2} - {0^2}} = 5\) b) Thay a = 5; b = -5 vào P = \(\sqrt {{a^2} - {b^2}} \), ta được: P = \(\sqrt {{5^2} - {{( - 5)}^2}} = 0\) c) Thay a = 2; b = -4 vào P = \(\sqrt {{a^2} - {b^2}} \) thì biểu thức P không khác định vì a2 – b2 = -12 < 0 . VD2 Video hướng dẫn giải Trả lời câu hỏi Vận dụng 2 trang 40 SGK Toán 9 Chân trời sáng tạo Một trạm phát sóng được đặt ở vị trí B cách đường tàu một khoảng AB = 300 m. Đầu tàu đang ở vị trí C, cách vị trí A một khoảng AC = x (m) (Hình 4) a) Viết biểu thức (theo x) biểu thị khoảng cách từ trạm phát sóng đến đầu tàu. b) Tính khoảng cách trên khi x = 400; x = 1000 (kết quả làm tròn đến hàng đơn vị của mét). Phương pháp giải: Sử dụng định lí Pythagore vào tam giac vuông ABC có: BC2 = AB2 + AC2 . Thay lần lượt giá trị x để tính khoảng cách Lời giải chi tiết: a) Ta có khoảng cách từ trạm phát sóng đến đầu tàu là: \(\sqrt {{{300}^2} + {x^2}} \) (m) b) Thay x = 400 thì khoảng cách từ trạm phát sóng đến đầu tàu là: \(\sqrt {{{300}^2} + {{400}^2}} = 500\) (m) Thay x = 1000 thì khoảng cách từ trạm phát sóng đến đầu tàu là: \(\sqrt {{{300}^2} + {{1000}^2}} \approx 1044\) (m)
Quảng cáo
|