Giải bài tập 2 trang 42 SGK Toán 12 tập 2 - Cánh diều

Biết \(F(x) = {x^3}\) là một nguyên hàm của hàm số f(x) trên \(\mathbb{R}\). Giá trị của \(\int\limits_1^2 {[2 + f(x)]dx} \) bằng: A. \(\frac{{23}}{4}\) B. 7 C. 9 D. \(\frac{{15}}{4}\)

Quảng cáo

Đề bài

Biết \(F(x) = {x^3}\) là một nguyên hàm của hàm số f(x) trên \(\mathbb{R}\). Giá trị của \(\int\limits_1^2 {[2 + f(x)]dx} \) bằng:

A. \(\frac{{23}}{4}\)

B. 7

C. 9

D. \(\frac{{15}}{4}\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của tích phân \(\int\limits_a^b {\left( {f(x) + g(x)} \right)} dx = \int\limits_a^b {f(x)} dx + \int\limits_a^b {g(x)} dx\)

Lời giải chi tiết

\(\int\limits_1^2 {[2 + f(x)]dx}  = \int\limits_1^2 {2dx}  + \int\limits_1^2 {f(x)dx}  = \left. {2x} \right|_1^2 + \left. {{x^3}} \right|_1^2 = 9\)

Chọn C

  • Giải bài tập 3 trang 42 SGK Toán 12 tập 2 - Cánh diều

    Biết \(\int\limits_0^1 {[f(x) + 2x]dx = 2} \). Khi đó, \(\int\limits_0^1 {f(x)dx} \) bằng: A. 1 B. 4 C. 2 D. 0

  • Giải bài tập 4 trang 42 SGK Toán 12 tập 2 - Cánh diều

    Tìm a) \(\int {2x({x^3}} - x + 2)dx\) b) \(\int {\left( {2x + \frac{1}{{{x^3}}}} \right)} dx\) c) \(\int {\left( {3 + 2{{\tan }^2}x} \right)} dx\) d) \(\int {\left( {1 - 3{{\cot }^2}x} \right)} dx\) e) \(\int {\left( {\sin + {2^{ - x + 1}}} \right)} dx\) g) \(\int {\left( {{{2.6}^{2x}} - {e^{ - x + 1}}} \right)} dx\)

  • Giải bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều

    a) Cho hàm số \(f(x) = {x^2} + {e^{ - x}}\). Tìm nguyên hàm F(x) của hàm số f(x) trên \(\mathbb{R}\) sao cho F(0) = 2023 b) Cho hàm số \(g(x) = \frac{1}{x}\). Tìm nguyên hàm G(x) của hàm số g(x) trên khoảng \((0; + \infty )\) sao cho G(1) = 2023

  • Giải bài tập 6 trang 42 SGK Toán 12 tập 2 - Cánh diều

    Tính a) \(\int\limits_{ - 1}^1 {{{(x + 2)}^3}} dx\) b) \(\int\limits_1^2 {\frac{2}{{{x^2}}}} dx\) c) \(\int\limits_1^4 {{x^2}\sqrt x } dx\) d) \(\int\limits_{ - 1}^0 {{2^{3x + 2}}} dx\) e) \(\int\limits_0^2 {{2^x}{{.3}^{x + 1}}} dx\) g) \(\int\limits_0^1 {\frac{{{7^x}}}{{{{11}^x}}}} dx\)

  • Giải bài tập 7 trang 42 SGK Toán 12 tập 2 - Cánh diều

    Một khinh khí cầu bay với độ cao (so với mực nước biển) tại thời điểm t là h(t), trong đó t tính bằng phút, h(t) tính bằng mét. Tốc độ bay của khinh khí cầu được cho bởi hàm số \(v(t) = - 0,12{t^2} + 1,2t\) với t tính bằng phút, v(t) tính bằng mét/ phút. Tại thời điểm xuất phát (t=0), khinh khí cầu ở độ cao 520m và 5 phút sau khi xuất phát (t = 0), khinh khí cầu ở độ cao 520m và 5 phút sau khi xuất phát, khinh khí cầu đã ở độ cao 530m a) Viết công thức xác định hàm số h(t) \((0 \le t \le 29)\)

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close