Giải bài 9.18 trang 68 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Một túi đựng 3 viên bị trắng và 5 viên bị đen. Chọn ngẫu nhiên 3 viên bi. Xác suất để trong 3 viên bị đó có cả bi trắng và bị đen là

Quảng cáo

Đề bài

Một túi đựng 3 viên bị trắng và 5 viên bị đen. Chọn ngẫu nhiên 3 viên bi. Xác suất để trong 3 viên bị đó có cả bi trắng và bị đen là

A. \(\frac{{13}}{{15}}\).               B. \(\frac{9}{{11}}\).                      C. \(\frac{{43}}{{56}}\).               D.\(\frac{{45}}{{56}}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết

Ta có \(n\left( \Omega  \right) = C_8^3\).

Gọi A là biến cố “chọn  ngẫu nhiên được 3 viên bi có cả bi trắng và đen”.

Suy ra \(\overline A \) là biến cố “chọn ngẫu nhiên được 3 viên bi chỉ có màu trắng hoặc màu đen”.

Khi đó \(n\left( {\overline A } \right) = C_3^3 + C_5^3 = 11\). Suy ra \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{{11}}{{C_8^3}} = \frac{{11}}{{56}}\).

Vậy \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = 1 - \frac{{11}}{{56}} = \frac{{45}}{{56}}\).  

Chọn D

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close