Giải bài 9.20 trang 68 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngGieo đồng thời hai con xúc xắc cân đối. Xác suất để số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 là: Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Gieo đồng thời hai con xúc xắc cân đối. Xác suất để số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 là: A. \(\frac{5}{{22}}\). B. \(\frac{1}{5}\). C. \(\frac{2}{9}\). D.\(\frac{7}{{34}}\). Phương pháp giải - Xem chi tiết Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\). Lời giải chi tiết Ta có \(n\left( \Omega \right) = 36\). Gọi A là biến cố “số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2”. Khi đó \(A = \left\{ {\left( {1;3} \right),\left( {3;1} \right),\left( {2;4} \right),\left( {4;2} \right),\left( {3;5} \right),\left( {5;3} \right),\left( {4;6} \right),\left( {6;4} \right)} \right\}\). Suy ra \(n\left( A \right) = 8\). Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{8}{{36}} = \frac{2}{9}\) Chọn C
Quảng cáo
|