Giải bài 9.20 trang 68 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Gieo đồng thời hai con xúc xắc cân đối. Xác suất để số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 là:

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

Đề bài

Gieo đồng thời hai con xúc xắc cân đối. Xác suất để số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 là:

A. \(\frac{5}{{22}}\).                     B. \(\frac{1}{5}\).                C. \(\frac{2}{9}\).                D.\(\frac{7}{{34}}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết

Ta có \(n\left( \Omega  \right) = 36\).

Gọi A là biến cố “số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2”.

Khi đó \(A = \left\{ {\left( {1;3} \right),\left( {3;1} \right),\left( {2;4} \right),\left( {4;2} \right),\left( {3;5} \right),\left( {5;3} \right),\left( {4;6} \right),\left( {6;4} \right)} \right\}\). Suy ra \(n\left( A \right) = 8\).

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{8}{{36}} = \frac{2}{9}\)

Chọn C

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close