Giải bài 9.14 trang 55 sách bài tập toán 8 - Kết nối tri thức với cuộc sốngCho hai tam giác ABC và DEF thỏa mãn \(2AB = 3AC = 4BC\) và \(DE = 6cm,\;DF = 4cm,\;EF = 3cm.\) Chứng minh $\Delta ABC\backsim \Delta DEF$ Quảng cáo
Đề bài Cho hai tam giác ABC và DEF thỏa mãn \(2AB = 3AC = 4BC\) và \(DE = 6cm,\;DF = 4cm,\;EF = 3cm.\) Chứng minh $\Delta ABC\backsim \Delta DEF$ (Đề bài trong sách sai nên Loigiaihay có sửa đổi lại tên tam giác cho đúng.) Phương pháp giải - Xem chi tiết Sử dụng kiến thức về định lý (trường hợp đồng dạng cạnh – cạnh – cạnh) để chứng minh hai tam giác đồng dạng: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau. Lời giải chi tiết Vì\(DE = 6cm,\;DF = 4cm,\;EF = 3cm\) nên ta có: \(2DE = 3DF = 4EF\) Mà \(2AB = 3AC = 4BC\). Do đó, \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}}\) Suy ra, $\Delta ABC\backsim \Delta DEF$ (c.c.c)
Quảng cáo
|