Giải bài 9 trang 37, 38 vở thực hành Toán 9 tập 2Hai khối học sinh lớp 8 và lớp 9 của một trường trung học cơ sở tham gia lao động. Nếu làm chung thì sẽ hoàn thành công việc sau 1 giờ 12 phút. Nếu mỗi khối lớp làm riêng thì khối lớp 9 làm xong nhanh hơn khối lớp 8 là 1 giờ. Hỏi nếu mỗi khối làm riêng thì sau bao lâu sẽ hoàn thành công việc? Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Quảng cáo
Đề bài Hai khối học sinh lớp 8 và lớp 9 của một trường trung học cơ sở tham gia lao động. Nếu làm chung thì sẽ hoàn thành công việc sau 1 giờ 12 phút. Nếu mỗi khối lớp làm riêng thì khối lớp 9 làm xong nhanh hơn khối lớp 8 là 1 giờ. Hỏi nếu mỗi khối làm riêng thì sau bao lâu sẽ hoàn thành công việc? Phương pháp giải - Xem chi tiết Các bước giải một bài toán bằng cách lập phương trình: Bước 1. Lập phương trình: - Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. - Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết. - Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2. Giải phương trình. Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận. Lời giải chi tiết Gọi x (giờ) là thời gian khối 8 hoàn thành công việc khi làm riêng. Điều kiện: \(x > \frac{6}{5}\). Do nếu mỗi khối lớp làm riêng thì khối lớp 9 làm xong nhanh hơn khối lớp 8 là 1 giờ nên thời gian khối 9 hoàn thành công việc khi làm riêng là \(x - 1\) (giờ). Đổi: 1 giờ 12 phút\( = \frac{6}{5}\) giờ. Do nếu làm chung thì sẽ hoàn thành công việc sau 1 giờ 12 phút nên ta có phương trình: \(\frac{1}{x} + \frac{1}{{x - 1}} = \frac{5}{6}\) Nhân cả hai vế của phương trình với \(6x\left( {x + 1} \right)\) để khử mẫu, ta được: \(6\left( {x - 1} \right) + 6x = 5x\left( {x - 1} \right)\) hay \(5{x^2} - 17x + 6 = 0\) Giải phương trình này ta được: \(x = 3\) (thỏa mãn điều kiện) hoặc \(x = 0,4\) (loại). Vậy nếu làm riêng thì khối 8 mất 3 giờ, khối 9 mất 2 giờ để hoàn thành công việc.
Quảng cáo
|