Giải bài 9 trang 125 vở thực hành Toán 9

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng d đi qua A cắt (O) tại E và cắt (O’) tại F (E và F khác A). Biết điểm A nằm trong đoạn EF. Gọi I và K lần lượt là trung điểm của AE và AF (H.5.49). a) Chứng minh rằng tứ giác OO’KI là một hình thang vuông. b) Chứng minh rằng (IK = frac{1}{2}EF). c) Khi d ở vị trí nào (d vẫn qua A) thì OO’KI là một hình chữ nhật?

Quảng cáo

Đề bài

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng d đi qua A cắt (O) tại E và cắt (O’) tại F (E và F khác A). Biết điểm A nằm trong đoạn EF. Gọi I và K lần lượt là trung điểm của AE và AF (H.5.49).

a) Chứng minh rằng tứ giác OO’KI là một hình thang vuông.

b) Chứng minh rằng \(IK = \frac{1}{2}EF\).

c) Khi d ở vị trí nào (d vẫn qua A) thì OO’KI là một hình chữ nhật?

Phương pháp giải - Xem chi tiết

a) Chứng minh \(OI \bot d\), \(KO' \bot d\) suy ra OI//KO’. Từ đó chứng minh được tứ giác OO’KI là một hình thang vuông.

b) Ta có: \(AE = 2AI\), \(AF = 2AK\) nên \(EF = AE + AF = 2\left( {AI + AK} \right) = 2IK\) nên \(IK = \frac{1}{2}EF\).

c) + Hình thang OO’KI là hình chữ nhật khi IK//OO’.

Lời giải chi tiết

(H.5.50)

a) \(\Delta \)AOE là tam giác cân tại O (OA=OE) có OI là đường trung tuyến (vì I là trung điểm của AE) nên OI cũng là đường cao, tức là \(\widehat {AIO} = {90^o}\) hay \(OI \bot d\). Tương tự, đối với tam giác AO’F, ta có \(\widehat {AKO'} = {90^o}\) hay \(KO' \bot d\). Do đó, OI//KO’ (cùng vuông góc với d).

Tứ giác OO’KI có: OI//KO’, \(\widehat {O'KI} = {90^o}\) nên là hình thang vuông.

b) Theo đề bài, \(EI = IA\) và \(AK = KF\) nên ta có \(AE = 2AI\) và \(AF = 2AK\).

Ta có: \(EF = AE + AF = 2AI + 2AK = 2\left( {AI + AK} \right) = 2IK\). Do đó, \(IK = \frac{1}{2}EF\).

c) Khi d đi qua A thì tứ giác OO’KI luôn là hình thang vuông.

Nếu hình thang vuông đó là hình chữ nhật thì IK//OO’, hay d//OO’.

Ngược lại, nếu d//OO’ thì IK//OO’ nên OO’KI là hình chữ nhật.

Vậy để tứ giác OO’KI là hình chữ nhật thì d//OO’.

  • Giải bài 10 trang 126 vở thực hành Toán 9

    Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O’) có đường kính CB. a) Xác định vị trí tương đối của hai đường tròn (O) và (O’). b) Kẻ dây DE của đường tròn (O) vuông góc với AC tại trung điểm H của AC. Tứ giác ADCE là hình gì? Vì sao? c) Gọi K là giao điểm của DB và đường tròn (O’). Chứng minh ba điểm E, C, K thẳng hàng. d) Chứng minh HK là tiếp tuyến của đường tròn (O’).

  • Giải bài 8 trang 124, 125 vở thực hành Toán 9

    Cho tam giác ABC ((widehat A) vuông). Vẽ hai đường tròn (B; BA) và (C; CA) cắt nhau tại A và A’. Chứng minh rằng: a) BA và BA’ là hai tiếp tuyến cắt nhau của đường tròn (C; CA); b) CA và CA’ là hai tiếp tuyến cắt nhau của đường tròn (B; BA).

  • Giải bài 7 trang 124 vở thực hành Toán 9

    Cho điểm B nằm giữa hai điểm A và C, sao cho (AB = 2cm) và (BC = 1cm). Vẽ các đường tròn (A; 1,5cm), (B; 3cm) và (C; 2cm). Hãy xác định các cặp đường tròn: a) Cắt nhau; b) Không giao nhau; c) Tiếp xúc với nhau.

  • Giải bài 6 trang 123, 124 vở thực hành Toán 9

    Cho AB là một dây bất kì (không phải là đường kính) của đường tròn (O; 4cm). Gọi C và D lần lượt là các điểm đối xứng với A và B qua tâm O. a) Hai điểm C và D có nằm trên đường tròn (O) không? Vì sao? b) Biết rằng ABCD là một hình vuông. Tính độ dài cung lớn AB và diện tích hình quạt tròn tạo bởi hai bán kính OA và OB.

  • Giải bài 5 trang 122, 123 vở thực hành Toán 9

    Cho đường tròn (O) đường kính BC và điểm A (khác B và C). a) Chứng minh rằng nếu A nằm trên (O) thì ABC là một tam giác vuông; ngược lại, nếu ABC là tam giác vuông tại A thì A nằm trên (O). b) Giả sử A là một trong hai giao điểm của đường tròn (B; BO) với đường tròn (O). Tính các góc của tam giác ABC. c) Với cùng giả thiết câu b, tính độ dài cung AC và diện tích hình quạt nằm trong (O) giới hạn bởi các bán kính OA và OC, biết rằng (BC = 6cm).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close