Giải bài 8.22 trang 52 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Một lớp có 40 học sinh, trong đó có 34 em thích ăn chuối, 22 em thích ăn cam

Quảng cáo

Đề bài

Một lớp có 40 học sinh, trong đó có 34 em thích ăn chuối, 22 em thích ăn cam và 2 em không thích ăn cả hai loại quả đó. Chọn ngẫu nhiên một học sinh trong lớp. Tính xác suất để em đó:

a) Thích ăn ít nhất một trong hai loại quả chuối hoặc cam.

b) Thích ăn cả hai loại quả chuối và cam.

Phương pháp giải - Xem chi tiết

Áp dụng quy tắc cộng xác suất

Xét các biến cố \(A\) : "Học sinh đó thích ăn chuối", \(B\) : "Học sinh đó thich ăn cam".

Tính \(P\left( A \right),P\left( B \right),P\left( {\overline A \,\,\overline B } \right)\).

a) \(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \,\,\overline B } \right)\).

b) \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right)\).

Lời giải chi tiết

Xét các biến cố \(A\) : "Học sinh đó thích ăn chuối", \(B\) : "Học sinh đó thich ăn cam".

Ta có \(P\left( A \right) = \frac{{34}}{{40}},P\left( B \right) = \frac{{22}}{{40}},P\left( {\overline A \,\,\overline B } \right) = \frac{2}{{40}} = \frac{1}{{20}}\).

a) \(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \,\,\overline B } \right) = 1 - \frac{2}{{40}} = \frac{{38}}{{40}} = \frac{{19}}{{20}}\).

b) \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = \frac{{34}}{{40}} + \frac{{22}}{{40}} - \frac{{38}}{{40}} = \frac{{18}}{{40}} = \frac{9}{{20}}\).

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close