Giải bài 8 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2

Trái Đất là một quả cầu khổng lồ có thể tích khoảng 1086,23.({10^9}k{m^3}). Sử dụng công thức tính thể tích hình cầu, hãy cho biết chiều dài đường xích đạo Trái Đất dài khoảng bao nhiêu kilômét (làm tròn kết quả đến hàng đơn vị của km)?

Quảng cáo

Đề bài

Trái Đất là một quả cầu khổng lồ có thể tích khoảng 1086,23.\({10^9}k{m^3}\). Sử dụng công thức tính thể tích hình cầu, hãy cho biết chiều dài đường xích đạo Trái Đất dài khoảng bao nhiêu kilômét (làm tròn kết quả đến hàng đơn vị của km)?

Phương pháp giải - Xem chi tiết

Các bước giải một bài toán bằng cách lập phương trình:

Bước 1. Lập phương trình:

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải phương trình.

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Lời giải chi tiết

Gọi \(V\left( {k{m^3}} \right)\) và R(km) lần lượt là thể tích và bán kính của Trái Đất.

Ta có: \(V = \frac{4}{3}\pi {R^3}\) nên \(R = \sqrt[3]{{\frac{{3V}}{{4\pi }}}} = \sqrt[3]{{\frac{{{{3.1086,23.10}^9}}}{{4\pi }}}} \approx 6\;377\left( {km} \right)\)

Chiều dài đường xích đạo (chu vi Trái Đất) là: \(2\pi R \approx 2\pi .6\;377 \approx 40\;068\left( {km} \right)\).

  • Giải bài 9 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

    Trong hình bên, cho AC=8cm, AD=9,6cm, (widehat {ABC} = {90^o},widehat {ACB} = {54^o}) và (widehat {ACD} = {74^o}). Hãy tính: a) AB (làm tròn đến hàng phần nghìn của cm). b) (widehat {ADC}) (làm tròn đến phút). (Gợi ý: Kẻ đường cao AH của tam giác ACD).

  • Giải bài 10 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

    Một chiếc thuyền đi với vận tốc 2km/h vượt qua một khúc sông nước chảy mạnh mất 5 phút. Biết rằng đường đi của thuyền tạo với bờ một góc ({70^o}). Tính chiều rộng của khúc sông (làm tròn đến hàng đơn vị của mét).

  • Giải bài 11 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

    Cho hai tiếp tuyến MA và MB của đường tròn (O). Gọi N là điểm sao cho MANB là một hình bình hành. a) Giả sử N không nằm trên (O), NA và NB cắt (O) lần lượt tại D và C. - Chứng minh rằng ABC là tam giác cân tại đỉnh A. - Chứng minh rằng hai cung BC và AD có số đo bằng nhau. b) Giả sử N nằm trên (O). - Chứng minh rằng MAB là tam giác đều. - Tính độ dài cung AB và diện tích của hình quạt tròn ứng với cung AB, biết rằng đường tròn (O) có bán kính bằng 6cm.

  • Giải bài 12 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

    Cho tam giác nhọn ABC và điểm D nằm giữa B và C. Gọi E và F lần lượt là chân đường vuông góc hạ từ D xuống AB và AC. a) Gọi I và J lần lượt là tâm đường tròn ngoại tiếp tam giác EBD và tam giác FDC. Chứng minh rằng hai đường tròn (I) và (J) tiếp xúc ngoài với nhau. b) Giả sử M là một điểm tùy ý khác F, nằm giữa A và C; gọi K là tâm đường tròn ngoại tiếp tam giác MDC. Chứng minh rằng hai đường tròn (I) và (K) cắt nhau.

  • Giải bài 13 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

    Đề bài Cho tam giác nhọn ABC nội tiếp đường tròn (O). Ba đường cao AD, BE và CF của tam giác ABC cắt nhau tại H. Gọi AK là đường kính của (O). Chứng minh rằng: a) (BH = CK,CH = BK); b) (AD.AK = AB.AC).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close