Giải bài 11 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

Cho hai tiếp tuyến MA và MB của đường tròn (O). Gọi N là điểm sao cho MANB là một hình bình hành. a) Giả sử N không nằm trên (O), NA và NB cắt (O) lần lượt tại D và C. - Chứng minh rằng ABC là tam giác cân tại đỉnh A. - Chứng minh rằng hai cung BC và AD có số đo bằng nhau. b) Giả sử N nằm trên (O). - Chứng minh rằng MAB là tam giác đều. - Tính độ dài cung AB và diện tích của hình quạt tròn ứng với cung AB, biết rằng đường tròn (O) có bán kính bằng 6cm.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Quảng cáo

Đề bài

Cho hai tiếp tuyến MA và MB của đường tròn (O). Gọi N là điểm sao cho MANB là một hình bình hành.

a) Giả sử N không nằm trên (O), NA và NB cắt (O) lần lượt tại D và C.

- Chứng minh rằng ABC là tam giác cân tại đỉnh A.

- Chứng minh rằng hai cung BC và AD có số đo bằng nhau.

b) Giả sử N nằm trên (O).

- Chứng minh rằng MAB là tam giác đều.

- Tính độ dài cung AB và diện tích của hình quạt tròn ứng với cung AB, biết rằng đường tròn (O) có bán kính bằng 6cm.

Phương pháp giải - Xem chi tiết

a) + Gọi E là giao điểm của AO và BC. Chứng minh \(OE \bot BC\).

+ Chứng minh tam giác BOC cân tại O, suy ra OE là đường cao đồng thời là đường trung trực của BC. Từ đó chứng minh được \(AB = AC\) nên tam giác ABC cân tại A.

+ Chứng minh tương tự, tam giác ADB cân tại B.

+ Chứng minh \(\widehat {BAC} = \widehat {{B_1}}\), từ đó chứng minh được sđ$\overset\frown{BC}$=sđ$\overset\frown{AD}$.

b) + Gọi E là giao điểm của AO và BN.

+ Chứng minh hình bình hành AMBN là hình thoi, suy ra \(AN = BN\) (1).

+ Chứng minh \(OE \bot BN\), chứng minh tam giác OBN cân tại O nên OE là đường cao đồng thời là đường trung trực của BN, từ đó chứng minh được\(AB = AN\) (2).

+ Từ (1) và (2) chứng minh được tam giác ABN đều. Do đó, tam giác MAB đều.

+ Chứng minh được sđ$\overset\frown{AB}$nhỏ \( = 2\widehat {ANB} = {120^o}\) từ đó tính được độ dài cung AB và diện tích của hình quạt tròn ứng với cung AB.

Lời giải chi tiết

a) Gọi E là giao điểm của AO và BC.

Vì MA là tiếp tuyến của (O) nên \(MA \bot AE\), BC//MA (do MANB là hình bình hành) nên \(AE \bot BC\) hay \(OE \bot BC\).

Tam giác OBC có: \(OB = OC\) nên tam giác BOC cân tại O, do đó OE là đường cao đồng thời là đường trung trực của BC. Mà A thuộc đường thẳng OE nên \(AB = AC\). Do đó, ABC là tam giác cân tại A.

Chứng minh tương tự ta có tam giác ADB cân tại B.

Ta có: \(\widehat {{D_1}} = \widehat {{C_1}}\) (góc nội tiếp đường tròn (O) cùng chắn cung nhỏ AB). Tức là hai tam giác cân ABC và BAD có các góc ở đáy bằng nhau. Do đó, hai góc ở đỉnh cũng bằng nhau. Suy ra \(\widehat {BAC} = \widehat {{B_1}}\).

Mà BAC là góc nội tiếp, BOC là góc ở tâm cùng chắn cung BC nên ta có sđ$\overset\frown{BC}=\widehat{BOC}=2\widehat{BAC}$.

Tương tự ta có: sđ$\overset\frown{AD}=\widehat{AOD}=2\widehat{{{B}_{1}}}$.

Do đó, sđ$\overset\frown{BC}$=sđ$\overset\frown{AD}$.

b) Gọi E là giao điểm của AO và BN.

Vì MA, MB là hai tiếp tuyến cắt nhau của (O) nên \(MA = MB\). Do đó, hình bình hành AMBN là hình thoi, suy ra \(AN = BN\) (1).

Vì MA//BN và \(AO \bot AM\) (do MA là tiếp tuyến của (O)) nên \(AO \bot BN\) hay \(OE \bot BN\).

Tam giác OBN có: \(OB = ON\) nên tam giác OBN cân tại O. Do đó, OE là đường cao đồng thời là đường trung trực của BN. Vì A thuộc đường thẳng OE nên \(AB = AN\) (2).

Từ (1) và (2) ta có: \(AN = BN = AB\) nên NAB là tam giác đều. Do đó, tam giác MAB đều.

Suy ra \(\widehat {ANB} = {60^o}\). Vì góc nội tiếp ANB chắn cung nhỏ AB của (O) nên sđ$\overset\frown{AB}$nhỏ \( = 2\widehat {ANB} = {120^o}\).

Độ dài cung nhỏ AB là: \({l_{AB}} = \frac{{120.6.\pi }}{{180}} = 4\pi \left( {cm} \right)\).

Diện tích hình quạt tròn ứng với cung AB là: \({S_{AB}} = \frac{{120}}{{360}}{.6^2}.\pi  = 12\pi \left( {c{m^2}} \right)\).

  • Giải bài 12 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

    Cho tam giác nhọn ABC và điểm D nằm giữa B và C. Gọi E và F lần lượt là chân đường vuông góc hạ từ D xuống AB và AC. a) Gọi I và J lần lượt là tâm đường tròn ngoại tiếp tam giác EBD và tam giác FDC. Chứng minh rằng hai đường tròn (I) và (J) tiếp xúc ngoài với nhau. b) Giả sử M là một điểm tùy ý khác F, nằm giữa A và C; gọi K là tâm đường tròn ngoại tiếp tam giác MDC. Chứng minh rằng hai đường tròn (I) và (K) cắt nhau.

  • Giải bài 13 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

    Đề bài Cho tam giác nhọn ABC nội tiếp đường tròn (O). Ba đường cao AD, BE và CF của tam giác ABC cắt nhau tại H. Gọi AK là đường kính của (O). Chứng minh rằng: a) (BH = CK,CH = BK); b) (AD.AK = AB.AC).

  • Giải bài 14 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

    Cho tam giác ABC nội tiếp đường tròn (O), vẽ (AX bot BC) và cắt nhau tại điểm D. Cho điểm H trên đoạn thẳng AD sao cho (DH = DX). Cho BH cắt AC tại E và CH cắt AB tại F. a) Chứng minh rằng H là trực tâm của tam giác ABC. b) Chứng minh rằng H là tâm của đường tròn nội tiếp tam giác DEF.

  • Giải bài 15 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2

    Một vật thể bằng kim loại gồm có một hình nón và một nửa hình cầu có chung đáy. Hình nón có chiều cao 4cm và đường kính đáy là 6cm. a) Hãy tìm thể tích và tổng diện tích bề mặt của vật thể. b) Vật thể được nấu chảy và đúc lại thành một hình trụ có chiều cao 4cm. Tìm bán kính đáy của hình trụ đó (làm tròn kết quả đến hàng phần trăm của cm). c) Nếu sơn 1 000 hình trụ như ở câu b và mỗi hộp sơn có thể dùng để sơn một diện tích (5{m^2}) thì cần bao nhiêu hộp sơn (làm tròn kết quả đến hàng đơn v

  • Giải bài 16 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2

    Trong một buổi tổng kết năm học, lớp 9C đã thực hiện bình chọn cho danh hiệu “Tổ học tập tích cực nhất của lớp” và thu được kết quả như sau: a) Lập bảng tần số tương đối. b) Vẽ biểu đồ hình quạt tròn biểu diễn bảng tần số thu được.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close