Giải bài 15 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2

Một vật thể bằng kim loại gồm có một hình nón và một nửa hình cầu có chung đáy. Hình nón có chiều cao 4cm và đường kính đáy là 6cm. a) Hãy tìm thể tích và tổng diện tích bề mặt của vật thể. b) Vật thể được nấu chảy và đúc lại thành một hình trụ có chiều cao 4cm. Tìm bán kính đáy của hình trụ đó (làm tròn kết quả đến hàng phần trăm của cm). c) Nếu sơn 1 000 hình trụ như ở câu b và mỗi hộp sơn có thể dùng để sơn một diện tích (5{m^2}) thì cần bao nhiêu hộp sơn (làm tròn kết quả đến hàng đơn v

Quảng cáo

Đề bài

Một vật thể bằng kim loại gồm có một hình nón và một nửa hình cầu có chung đáy. Hình nón có chiều cao 4cm và đường kính đáy là 6cm.

a) Hãy tìm thể tích và tổng diện tích bề mặt của vật thể.

b) Vật thể được nấu chảy và đúc lại thành một hình trụ có chiều cao 4cm. Tìm bán kính đáy của hình trụ đó (làm tròn kết quả đến hàng phần trăm của cm).

c) Nếu sơn 1 000 hình trụ như ở câu b và mỗi hộp sơn có thể dùng để sơn một diện tích \(5{m^2}\) thì cần bao nhiêu hộp sơn (làm tròn kết quả đến hàng đơn vị của \(c{m^2}\)).

Phương pháp giải - Xem chi tiết

a) + Thể tích của vật thể bằng tổng thể tích của phần hình nón chiều cao 4cm, đường kính đáy là 6cm và thể tích nửa hình cầu bán kính 3cm.

+ Tổng diện tích bề mặt của vật thể bằng tổng diện tích xung quanh của phần hình nón chiều cao 4cm, đường kính đáy là 6cm và nửa diện tích mặt cầu bán kính 3cm.

b) + Gọi R là bán kính đáy của hình trụ có chiều cao 4cm, điều kiện: \(R > 0\).

+ Theo đề bài ta có \(V = \pi {R^2}h = \pi .{R^2}.4 = 30\pi \left( {c{m^3}} \right)\), giải phương trình, đối chiếu điều kiện tìm được R.

c) + Tính diện tích toàn phần của hình trụ \(S = 2\pi Rh + 2\pi {R^2}\).

+ Diện tích cần sơn của 1000 hình trụ là: 1000S, từ đó tìm được số hộp sơn cần dùng để sơn 1000 hình trụ.

Lời giải chi tiết

a) Thể tích phần hình nón của vật thể là:

\({V_1} = \frac{1}{3}\pi .{\left( {6:2} \right)^2}.4 = 12\pi \left( {c{m^3}} \right)\).

Thể tích phần hình nửa hình cầu của vật thể là:

\({V_2} = \frac{1}{2}.\frac{4}{3}.\pi .{\left( {6:2} \right)^3} = 18\pi \left( {c{m^3}} \right)\).

Thể tích của vật thể là:

\(V = {V_1} + {V_2} = 12\pi  + 18\pi  = 30\pi \left( {c{m^3}} \right)\).

Diện tích xung quanh phần hình nón của vật thể là:

\({S_1} = \pi Rl = \pi .3.\sqrt {{4^2} + {3^2}}  = 15\pi \left( {c{m^2}} \right)\).

Diện tích nửa mặt cầu của vật thể là:

\({S_2} = 2\pi {R^2} = 2\pi {.3^2} = 18\pi \left( {c{m^2}} \right)\).

Diện tích bề mặt của vật thể là:

\(S = {S_1} + {S_2} = 15\pi  + 18\pi  = 33\pi \left( {c{m^2}} \right)\).

b) Gọi R(cm) là bán kính đáy của hình trụ có chiều cao 4cm, điều kiện: \(R > 0\).

Thể tích của hình trụ là:

\(V = \pi {R^2}h = \pi .{R^2}.4 = 30\pi \left( {c{m^3}} \right)\),

suy ra \(R = \sqrt {\frac{{30}}{4}}  \approx 2,74\left( {cm} \right)\) (do \(R > 0\)).

c) Diện tích toàn phần của hình trụ là:

\(S = 2\pi Rh + 2\pi {R^2} = 2\pi .2,74.4 + 2\pi {.2,74^2} \approx 116\left( {c{m^2}} \right).\)

Diện tích cần sơn của 1000 hình trụ là:

\(116.1\;000 = 116\;000\left( {c{m^2}} \right) = 11,6{m^2}\).

Vậy cần 3 hộp sơn để sơn 1 000 hình trụ như câu b.

  • Giải bài 16 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2

    Trong một buổi tổng kết năm học, lớp 9C đã thực hiện bình chọn cho danh hiệu “Tổ học tập tích cực nhất của lớp” và thu được kết quả như sau: a) Lập bảng tần số tương đối. b) Vẽ biểu đồ hình quạt tròn biểu diễn bảng tần số thu được.

  • Giải bài 17 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2

    Bảng sau đây cho biết cơ cấu theo độ tuổi của công nhân trong một công ty may mặc: a) Lập bảng tần số tương đối ghép nhóm cho bảng dữ liệu trên. b) Vẽ biểu đồ tần số tương đối ghép nhóm dạng cột biểu diễn bảng tần số tương đối ghép nhóm thu được.

  • Giải bài 18 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2

    Một đoàn tàu có 4 toa A, B, C, D đỗ ở một sân ga. Trên sân ga có hai hành khách không quen biết nhau. Từ sân ga, mỗi người chọn ngẫu nhiên một toa tàu để bước lên. Kí hiệu hai hành khách là 1 và 2. Mỗi kết quả có thể là một cặp (X, Y), trong đó X, Y tương ứng là toa tàu mà hành khách số 1 và hành khác số 2 bước lên. a) Có bao nhiêu kết quả có thể xảy ra? Chúng có đồng khả năng không? Tại sao? b) Mô tả không gian mẫu. c) Tính xác suất của các biến cố sau: + E: “Hai hành khách này ở cùng một t

  • Giải bài 14 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

    Cho tam giác ABC nội tiếp đường tròn (O), vẽ (AX bot BC) và cắt nhau tại điểm D. Cho điểm H trên đoạn thẳng AD sao cho (DH = DX). Cho BH cắt AC tại E và CH cắt AB tại F. a) Chứng minh rằng H là trực tâm của tam giác ABC. b) Chứng minh rằng H là tâm của đường tròn nội tiếp tam giác DEF.

  • Giải bài 13 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2

    Đề bài Cho tam giác nhọn ABC nội tiếp đường tròn (O). Ba đường cao AD, BE và CF của tam giác ABC cắt nhau tại H. Gọi AK là đường kính của (O). Chứng minh rằng: a) (BH = CK,CH = BK); b) (AD.AK = AB.AC).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close