2K8 XUẤT PHÁT SỚM - RA MẮT LỚP LIVE ÔN ĐGNL & ĐGTD 2026

ƯU ĐÃI 50% HỌC PHÍ + CƠ HỘI NHẬN MÃ "LOCDAUNAM" GIẢM THÊM 600K HỌC PHÍ

Chỉ còn 2 ngày
Xem chi tiết

Giải bài 8 trang 68 sách bài tập toán 11 - Cánh diều

Tính các giới hạn sau:

Tổng hợp đề thi giữa kì 2 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Tính các giới hạn sau:

a) \(\lim \frac{{4n + 2}}{3}\)                                                                       

b) \(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}}\)

c) \(\lim \frac{{ - 3 + \frac{1}{{n + 1}}}}{{{5^n}}}\)                                                                             

d) \(\lim \left( {6 - \frac{5}{{{4^n}}}} \right)\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất về dãy số có giới hạn vô cực và định lí về giới hạn hữu hạn.

Lời giải chi tiết

a) Ta có \(\lim \left( {4n + 2} \right) =  + \infty \), \(\lim 3 = 3\) nên \(\lim \frac{{4n + 2}}{3} =  + \infty \)

b) Ta có \(\lim \frac{2}{n} = 0 \Rightarrow \lim \left( { - 5 + \frac{2}{n}} \right) =  - 5\)

Mặt khác, \(\lim \left( {3n + 4} \right) =  + \infty \). Suy ra \(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}} =  - \infty \)

c) Ta có \(\lim \frac{1}{{n + 1}} = 0 \Rightarrow \lim \left( { - 3 + \frac{1}{{n + 1}}} \right) =  - 3\)

Mặt khác, \(\lim {5^n} =  + \infty \), suy ra \(\lim \frac{{ - 3 + \frac{1}{{n + 1}}}}{{{5^n}}} = 0\)

d) Ta có \(\lim {4^n} =  + \infty  \Rightarrow \lim \frac{5}{{{4^n}}} = 0\).

Như vậy \(\lim \left( {6 - \frac{5}{{{4^n}}}} \right) = \lim 6 - \lim \frac{5}{{{4^n}}} = 6 - 0 = 6\).

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

close