Giải bài 6 trang 68 sách bài tập toán 11 - Cánh diều

Chứng minh rằng \(\lim \frac{{{{\left( { - 1} \right)}^n}}}{{{n^2}}} = 0\).

Quảng cáo

Đề bài

Chứng minh rằng \(\lim \frac{{{{\left( { - 1} \right)}^n}}}{{{n^2}}} = 0\).

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa về giới hạn dãy số

Lời giải chi tiết

Xét dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{n^2}}}\). Giả sử \(h\) là số thực dương bé tuỳ ý cho trước.

Ta có \(\left| {{u_n}} \right| = \left| {\frac{{{{\left( { - 1} \right)}^n}}}{{{n^2}}}} \right| = \frac{1}{{{n^2}}}\). Do đó \(\left| {{u_n}} \right| < h \Leftrightarrow \frac{1}{{{n^2}}} < h \Leftrightarrow {n^2} > \frac{1}{h} \Leftrightarrow n > \frac{1}{{\sqrt h }}\).

Vậy với các số tự nhiên \(n\) thoả mãn \(n > \frac{1}{{\sqrt h }}\) thì \(\left| {{u_n}} \right| < h\)

Áp dụng định nghĩa về giới hạn dãy số, ta kết luận \(\lim \frac{{{{\left( { - 1} \right)}^n}}}{{{n^2}}} = 0\).

Bài toán được chứng minh.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close