Giải bài 8 trang 19 vở thực hành Toán 9 tập 2

Tìm điểm A (khác gốc tọa độ O) nằm trên đồ thị hàm số (y = {x^2}) sao cho khoảng cách từ điểm đó tới hai trục tọa độ là bằng nhau.

Quảng cáo

Đề bài

Tìm điểm A (khác gốc tọa độ O) nằm trên đồ thị hàm số \(y = {x^2}\) sao cho khoảng cách từ điểm đó tới hai trục tọa độ là bằng nhau.

Phương pháp giải - Xem chi tiết

+ Điểm \(A\left( {{x_o};{y_o}} \right)\) nằm trong mặt phẳng tọa độ Oxy có khoảng cách tới trục Oy và trục Ox lần lượt là \(\left| {{y_o}} \right|\) và \(\left| {{x_o}} \right|\).

+ Theo đề bài ta có: \(\left| {{y_o}} \right| = \left| {{x_o}} \right|\).

+ Vì điểm A thuộc đồ thị hàm số đã cho nên ta có: \({y_o} = x_o^2\).

+ Từ \(\left| {{y_o}} \right| = \left| {{x_o}} \right|\), ta xét hai trường hợp \({y_o} = {x_o}\) và \({y_o} =  - {x_o}\). Thay vào \({y_o} = x_o^2\), tính được \({x_o}\) từ đó tính được \({y_o}\).

Lời giải chi tiết

Điểm \(A\left( {{x_o};{y_o}} \right)\) nằm trong mặt phẳng tọa độ Oxy có khoảng cách tới trục Ox và trục Oy lần lượt là \(\left| {{y_o}} \right|\) và \(\left| {{x_o}} \right|\).

Khoảng cách từ điểm \(A\left( {{x_o};{y_o}} \right)\) tới hai trục tọa độ bằng nhau khi \(\left| {{y_o}} \right| = \left| {{x_o}} \right|\) (1).

Do điểm A thuộc đồ thị hàm số đã cho nên ta có: \({y_o} = x_o^2\) (2).

Từ (1) ta xét hai trường hợp sau:

Trường hợp 1: \({y_o} = {x_o}\), từ (2) suy ra \(x_o^2 = {x_o}\) hay \(x_o^2 - {x_o} = 0\).

Suy ra \({x_o} = 0\) (loại, vì khi đó A trùng với gốc O), hoặc \({x_o} = 1\) (thỏa mãn).

Khi đó, ta có điểm \({A_1}\left( {1;1} \right)\).

Trường hợp 2: \({y_o} =  - {x_o}\), từ (2) suy ra \(x_o^2 =  - {x_o}\) hay \(x_o^2 + {x_o} = 0\).

Suy ra \({x_o} = 0\) (loại, vì khi đó A trùng với gốc O), hoặc \({x_o} =  - 1\) (thỏa mãn).

Khi đó, ta có điểm \({A_2}\left( { - 1;1} \right)\).

Vậy có hai điểm nằm trên đồ thị hàm số \(y = {x^2}\) có khoảng cách đến hai trục tọa độ là bằng nhau là \({A_1}\left( {1;1} \right)\) và \({A_2}\left( { - 1;1} \right)\).

 

  • Giải bài 7 trang 19 vở thực hành Toán 9 tập 2

    Giả sử doanh thu (nghìn đồng) của một cửa hàng bán phở trong một ngày có thể mô hình hóa bằng công thức (Rleft( x right) = xleft( {220 - 4x} right)) với (30 le x le 50), trong đó x (nghìn đồng) là giá tiền của một bát phở. Nếu muốn doanh thu trong ngày của cửa hàng là 3 triệu đồng thì giá bán của mỗi bát phở phải là bao nhiêu?

  • Giải bài 6 trang 18 vở thực hành Toán 9 tập 2

    Từ một tấm tôn hình vuông, người ta cắt bỏ bốn hình vuông có độ dài cạnh 8cm ở bốn góc, sau đó gập thành một chiếc thùng có dạng hình hộp chữ nhật không có nắp và có thể tích là (200c{m^3}). Hãy tính độ dài cạnh của tấm tôn hình vuông ban đầu.

  • Giải bài 5 trang 18 vở thực hành Toán 9 tập 2

    Sử dụng máy tính cầm tay, tìm nghiệm gần đúng các phương trình sau (làm tròn kết quả đến chữ số thập phân thứ hai): a) (sqrt 2 {x^2} - sqrt 5 x - 1 = 0); b) ({x^2} - left( {sqrt 3 - 1} right)x - sqrt 7 = 0).

  • Giải bài 4 trang 18 vở thực hành Toán 9 tập 2

    Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình sau: a) ({x^2} - 2sqrt 5 x + 1 = 0); b) (3{x^2} - 9x + 3 = 0); c) (11{x^2} - 13x + 5 = 0); d) (2{x^2} + 2sqrt 6 x + 3 = 0).

  • Giải bài 3 trang 17 vở thực hành Toán 9

    Cho hình chóp tam giác đều có cạnh đáy là tam giác đều cạnh a (cm) và chiều cao 10cm. a) Tính diện tích đáy S của hình chóp theo a. b) Từ kết quả câu a, tính thể tích V của hình chóp theo a và tính giá trị của V khi (a = 4cm). c) Nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp thay đổi thế nào?

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close