Giải bài 8 trang 109 vở thực hành Toán 9 tập 2

Cho lục giác đều ABCDEF nội tiếp đường tròn (O). Chứng tỏ rằng nếu một phép quay biến A, B thành B, C thì phép quay đó giữ nguyên lục giác đều ABCDEF.

Quảng cáo

Đề bài

Cho lục giác đều ABCDEF nội tiếp đường tròn (O). Chứng tỏ rằng nếu một phép quay biến A, B thành B, C thì phép quay đó giữ nguyên lục giác đều ABCDEF.

Phương pháp giải - Xem chi tiết

Phép quay thuận chiều \({\alpha ^o}\left( {{0^o} < {\alpha ^o} < {{360}^o}} \right)\) tâm O giữ nguyên điểm O, biến điểm A khác điểm O thành điểm B thuộc đường tròn (O; OA) sao cho tia OA quay thuận chiều kim đồng hồ đến tia OB thì điểm A tạo nên cung AB có số đo \({\alpha ^o}\).

Lời giải chi tiết

Vì phép quay biến A thành B và biến B thành C nên tâm của phép quay này nằm trên các đường trung trực của các đoạn thẳng AB và BC.

Do hai đường trung trực của hai đoạn thẳng AB, BC cắt nhau tại O (tâm đường tròn ngoại tiếp tam giác ABC) nên O chính là tâm của phép quay nói trên.

Do \(\widehat {AOB} = {60^o}\) nên phép quay trên là phép quay thuận chiều hoặc ngược chiều \({60^o}\) với tâm O.

Cả hai phép quay thuận chiều \({60^o}\) hoặc ngược chiều \({60^o}\) với tâm O đều giữ nguyên lục giác đều.

Do đó phép quay đã cho giữ nguyên lục giác đều.

  • Giải bài 7 trang 109 vở thực hành Toán 9 tập 2

    Hãy tính độ dài của cạnh của bát giác đều nội tiếp một đường tròn bán kính (sqrt 2 cm).

  • Giải bài 6 trang 109 vở thực hành Toán 9 tập 2

    Người ta muốn làm một khay đựng bánh kẹo hình lục giác đều có cạnh 10cm và chia thành 7 ngăn gồm một lục giác đều nhỏ và 6 hình thang cân như hình dưới đây. Hỏi lục giác đều nhỏ phải có cạnh bằng bao nhiêu để nó có diện tích bằng hai lần diện tích mỗi hình thang?

  • Giải bài 5 trang 108 vở thực hành Toán 9 tập 2

    Cho ngũ giác đều ABCDE nội tiếp đường tròn (O) như hình bên. a) Hãy tìm một phép quay thuận chiều tâm O biến điểm A thành điểm C. b) Phép quay trên sẽ biến các điểm B, C, D, E lần lượt thành những điểm nào? Phép quay này có giữ nguyên ngũ giác đều ABCDE không?

  • Giải bài 4 trang 108 vở thực hành Toán 9 tập 2

    Biết rằng bốn đỉnh A, B, C, D của một hình vuông cùng nằm trên một đường tròn (O) theo thứ tự ngược chiều kim đồng hồ. Phép quay thuận chiều ({45^o}) biến các điểm A, B, C, D lần lượt thành các điểm E, F, G, H. a) Vẽ đa giác EAFBGCHD. b) Đa giác EAFBGCHD có phải là một hình bát giác đều hay không? Vì sao?

  • Giải bài 3 trang 107 vở thực hành Toán 9 tập 2

    Cho hình vuông ABCD có cạnh bằng 4cm. Tính chu vi, diện tích của các đường tròn nội tiếp và ngoại tiếp hình vuông ABCD.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close