Giải bài 6 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2Một chất điểm chuyển động thẳng có phương trình (s = 100 + 2t - {t^2}) trong đó thời gian được tính bằng giây và s được tính bằng mét. Quảng cáo
Đề bài Một chất điểm chuyển động thẳng có phương trình \(s = 100 + 2t - {t^2}\) trong đó thời gian được tính bằng giây và s được tính bằng mét. a) Tại thời điểm nào chất điểm có vận tốc bằng 0? b) Tìm vận tốc và gia tốc của chất điểm tại thời điểm \(t = 3s\). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về ý nghĩa của đạo hàm và đạo hàm cấp hai: + Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường di chuyển của vật theo thời gian t thì \(f'\left( {{t_0}} \right)\) biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\). + Đạo hàm cấp hai \(f''\left( t \right)\) là gia tốc tức thời tại thời điểm t của vật chuyển động có phương trình \(s = f\left( t \right)\). Lời giải chi tiết a) Ta có: \(s' = - 2t + 2\) Chất điểm có vận tốc bằng 0 khi \(0 = - 2t + 2 \Leftrightarrow t = 1\) Vậy chất điểm có vận tốc bằng 0 khi \(t = 1\) giây. b) Ta có: \(s'' = - 2\) Tại thời điểm \(t = 3s\) ta có: \(s' = - 3.2 + 2 = - 4\left( {m/s} \right)\); \(s'' = - 2\) \(m/{s^2}\) Vậy khi \(t = 3s\) thì vận tốc của chất điểm là \( - 4m/s\) và gia tốc của chất điểm là \( - 2m/{s^2}\)
Quảng cáo
|