Giải bài 6 trang 110, 111 vở thực hành Toán 9

Cho tam giác đều ABC có (AB = 2sqrt 3 cm). Nửa đường tròn đường kính BC cắt hai cạnh AB và AC lần lượt tại D và E (khác B và C). (H.5.24). a) Chứng tỏ rằng ba cung nhỏ BD, DE và EC bằng nhau. Tính số đo mỗi cung ấy. b) Tính diện tích của hình viên phân giới hạn bởi dây BD và cung nhỏ BD.

Quảng cáo

Đề bài

Cho tam giác đều ABC có \(AB = 2\sqrt 3 cm\). Nửa đường tròn đường kính BC cắt hai cạnh AB và AC lần lượt tại D và E (khác B và C). (H.5.24).

a) Chứng tỏ rằng ba cung nhỏ BD, DE và EC bằng nhau. Tính số đo mỗi cung ấy.

b) Tính diện tích của hình viên phân giới hạn bởi dây BD và cung nhỏ BD.

Phương pháp giải - Xem chi tiết

a) Gọi O là trung điểm của BC.

+ Chứng minh CD, BE là đường cao của tam giác đều ABC, từ đó suy ra D, E lần lượt là trung điểm của AB, AC.

+ Chứng minh các tam giác BOD, DOE, EOC là các tam giác đều, suy ra số đo các góc BOD, DOE, EOC.

+ Ba cung nhỏ $\overset\frown{BD},\overset\frown{DE}$ và $\overset\frown{EC}$ lần lượt bị chắn bởi các góc ở tâm BOD, DOE, EOC nên tính được số đo các cung đó.

b) Diện tích hình viên phân bằng diện tích hình quạt tròn ứng với cung BD trừ đi diện tích tam giác BOD.

Lời giải chi tiết

(H.5.25)

a) Gọi O là trung điểm của BC. Tam giác DBC có đường trung tuyến DO bằng \(\frac{1}{2}BC\) (bằng một nửa cạnh huyền) nên DBC là tam giác vuông tại D. Vậy CD là đường cao của tam giác đều ABC, suy ra D là trung điểm của AB. Tương tự, E là trung điểm của AC. Từ đó suy ra bốn tam giác BOD, DOE, EOC, ADE là những tam giác đều, với độ dài cạnh bằng một nửa độ dài cạnh của tam giác đều ABC, tức là bằng \(\sqrt 3 cm\).

Ba cung nhỏ $\overset\frown{BD},\overset\frown{DE}$ và $\overset\frown{EC}$ lần lượt bị chắn bởi các góc ở tâm BOD, DOE, EOC, mà có góc này đều bằng 60 độ (các góc của tam giác đều) nên các cung đang xét có số đo bằng nhau và cùng có số đo bằng 60 độ.

b) Diện tích hình quạt tròn ứng với cung BD là: \({S_q} = \frac{{60}}{{360}}.\pi .{\left( {\sqrt 3 } \right)^2} = \frac{\pi }{2}\left( {c{m^2}} \right)\)

Diện tích của tam giác BOD là: \({S_{BOD}} = \frac{1}{2}{\left( {\sqrt 3 } \right)^2}\sin {60^o} = \frac{{3\sqrt 3 }}{4}\left( {c{m^2}} \right)\)

Diện tích hình viên phân là: \(S = {S_q} - {S_{BOD}} = \frac{\pi }{2} - \frac{{3\sqrt 3 }}{4} = \frac{{2\pi  - 3\sqrt 3 }}{4}\left( {c{m^2}} \right)\)

  • Giải bài 7 trang 111 vở thực hành Toán 9

    Cho đường tròn (O), đường kính (AB = 4sqrt 3 cm). Điểm C thuộc đường tròn tâm O sao cho (widehat {AOC} = {60^o}). Tính diện tích hình viên phân giới hạn bởi dây AC và cung nhỏ AC.

  • Giải bài 5 trang 109, 110 vở thực hành Toán 9

    Ba bộ phận truyền chuyển động của một chiếc xe đạp gồm một giò đĩa (bánh răng gắn với bàn đạp), một chiếc líp (cũng có dạng bánh răng) gắn với bánh xe và bộ xích (H.5.23). Biết rằng giò đĩa có bán kính 15 cm, líp có bán kính 4 cm và bánh xe có đường kính 65 cm. Hỏi khi người đi xe đạp một vòng thì xe chạy được quãng đường dài bao nhiêu mét (làm tròn kết quả đến hàng phần chục)?

  • Giải bài 4 trang 109 vở thực hành Toán 9

    Cho đường tròn (O; 5cm). a) Hãy nêu cách vẽ dây AB sao cho khoảng cách từ điểm O đến dây AB bằng 2,5cm. b) Tính độ dài của dây AB trong câu a (làm tròn đến hàng phần trăm). c) Tính số đo và độ dài của cung nhỏ AB. d) Tính diện tích hình quạt tròn ứng với cung nhỏ AB.

  • Giải bài 3 trang 108 vở thực hành Toán 9

    Có thể xem guồng nước (còn gọi là cọn nước) là một công cụ hay cỗ máy có dạng hình tròn, quay được nhờ sức nước chảy (H.5.21a). Guồng nước thường thấy ở các vùng miền núi. Nhiều guồng nước được làm bằng tre, dùng để đưa nước lên ruộng cao, giã gạo hoặc làm một số việc khác. Giả sử ngấn nước ngăn cách giữa phần trên và phần dưới của một guồng nước được biểu thị bởi cung ứng với một dây dài 4 m và điểm ngập sâu nhất là 0,5 m (trên Hình 5.21b, điểm ngập sâu nhất là điểm C, ta có AB = 4 m và HC = 0

  • Giải bài 2 trang 108 vở thực hành Toán 9

    Cho tam giác ABC không là tam giác vuông. Gọi H và K là chân các đường vuông góc lần lượt hạ từ B và C xuống AC và AB. Chứng minh rằng: a) Đường tròn đường kính BC đi qua các điểm H và K; b) (KH < BC).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close