Giải bài 59 trang 125 sách bài tập toán 9 - Cánh diều tập 1

Tam giác Reuleaux là hình tạo nên từ phần giao nhau của ba đường tròn cùng bán kính, tâm của mỗi đường tròn chính là giao điểm của hai đường tròn còn lại. Tạo tam giác Reuleaux từ ba đường tròn (A), (B), (C) (Hình 56). Tính số đo các cung nhỏ BaC, CbA, AcB của tam giác Reuleaux. Nêu nhận xét về số đo của các cung tròn đó.

Quảng cáo

Đề bài

Tam giác Reuleaux là hình tạo nên từ phần giao nhau của ba đường tròn cùng bán kính, tâm của mỗi đường tròn chính là giao điểm của hai đường tròn còn lại. Tạo tam giác Reuleaux từ ba đường tròn (A), (B), (C) (Hình 56). Tính số đo các cung nhỏ BaC, CbA, AcB của tam giác Reuleaux. Nêu nhận xét về số đo của các cung tròn đó.

Phương pháp giải - Xem chi tiết

Bước 1: Chứng minh tam giác ABC đều, suy ra \(\widehat {ABC} = \widehat {BCA} = \widehat {CAB} = 60^\circ \).

Bước 2: Tính số đo các cung CbA, AcB, BaC.

Lời giải chi tiết

Do 3 đường tròn có  cùng bán kính nên \(AB = BC = CA\), suy ra tam giác ABC đều, do đó \(\widehat {ABC} = \widehat {BCA} = \widehat {CAB} = 60^\circ \).

Ta lại có \(\widehat {ABC},\widehat {BCA},\widehat {CAB}\) lần lượt là các góc ở tâm của 3 đường tròn (B), (C), (A) nên số đo các cung CbA, AcB, BaC bằng 60⁰.

Vậy số đo 3 cung tròn trên bằng nhau.

  • Giải bài 60 trang 125 sách bài tập toán 9 - Cánh diều tập 1

    Cho đường tròn (O; R) và hai điểm A, B nằm trên đường tròn sao cho độ dài cung nhỏ AB bằng \(\frac{{5\pi R}}{6}\) a) Xác định điểm C trên cung lớn AB sao cho khi kẻ CH vuông góc với AB tại H thì AH = CH. b) Tính độ dài các cung AC, BC theo R. c) Kẻ OK vuông góc với AB tại K, tia OK cắt đường tròn (O) tại E. Tính diện tích hình quạt tròn EOB (giới hạn bởi cung nhỏ BE và hai bán kính OE, OB) theo R. d) Tính tỉ số phần trăm giữa diện tích hình quạt tròn BOC (giới hạn bởi cung nhỏ BC và hai bán

  • Giải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1

    Cho hình vành khuyên giới hạn bởi hai đường tròn (O; R), (O; r) với \(R + r = 1,2dm\), \(R > r\)và diện tích hình vành khuyên đó là 1,5072 dm2 (Hình 55). Tính R và r, \(\pi \approx 3,14\).

  • Giải bài 57 trang 124 sách bài tập toán 9 - Cánh diều tập 1

    Cho hình thang vuông ABCD (\(\widehat A = \widehat B = 90^\circ \)) với \(\widehat C = 30^\circ \), BC = CD = a. Vẽ một phần đường tròn (C; CD) (Hình 54). Tính diện tích của phần tô màu xám theo a.

  • Giải bài 56 trang 124 sách bài tập toán 9 - Cánh diều tập 1

    Thành phố Hồ Chí Minh có vĩ độ là 10°10′ Bắc. Tìm độ dài cung kinh tuyến từ Thành phố Hồ Chí Minh đến Xích Đạo (làm tròn kết quả đến hàng trăm của kilômét), biết mỗi kinh tuyến là một nửa vòng Trái Đất và có độ dài khoảng 20 000 km.

  • Giải bài 55 trang 124 sách bài tập toán 9 - Cánh diều tập 1

    Cho nửa đường tròn tâm O đường kính AB. Gọi C, D lần lượt là điểm chính giữa của cung AB, AC. a) Chứng minh \(\widehat {BAC} = \widehat {COD} = \widehat {ABC} = \widehat {ACO}\). b) Lấy điểm M thuộc cung CD. Chứng minh \(AM > CM\)và \(\widehat {COM} = 2\widehat {CAM}\). c) Khi M di chuyển trên cung nhỏ AC, tìm vị trí của điểm M để diện tích của tam giác MAC lớn nhất.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close