Giải bài 5.46 trang 89 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Tính các giới hạn sau:

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x(x + 1)(2x - 1)}}{{5{x^3} + x + 7}}\);

b) \(\mathop {\lim }\limits_{x \to  - \infty } ({x^3} - 1)(2 - {x^5})\);

c) \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt[3]{{{x^2} + {x^2} + 1}} - x} \right)\).

Phương pháp giải - Xem chi tiết

+ Nếu \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} =  + \infty \) và \(\mathop {\lim }\limits_{n \to  + \infty } {v_n} = a < 0\) thì \(\mathop {\lim }\limits_{n \to  + \infty } {u_n}{v_n} =  - \infty \).

Đối với những biểu thức chứa hiệu của căn, chúng ta dùng phương pháp nhân liên hợp. Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn.

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x(x + 1)(2x - 1)}}{{5{x^3} + x + 7}} = \frac{2}{5}.\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } ({x^3} - 1)(2 - {x^5}) = \mathop {\lim }\limits_{x \to  - \infty } {x^8}\left( {1 - \frac{1}{{{x^3}}}} \right)\left( {\frac{2}{{{x^5}}} - 1} \right) =  - \infty \).

c) \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt[3]{{{x^2} + {x^2} + 1}} - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + 1}}{{\sqrt[3]{{{{\left( {{x^3} + {x^2} + 1} \right)}^2}}} + x\,\sqrt[3]{{{x^3} + {x^2} + 1}} + {x^2}}} = \frac{1}{3}.\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close