Giải bài 54 trang 124 sách bài tập toán 9 - Cánh diều tập 1

Cho đường tròn (O; R) và ba điểm A, B, C nằm trên đường tròn với AB < AC. Gọi M là trung điểm của đoạn thẳng BC. Trên cung BC không chứa điểm A, lấy điểm D sao cho \(\widehat {BAD} = \widehat {CAM}\). a) Chứng minh \(\widehat {ADB} = \widehat {CDM}\). b) Gọi E là giao điểm của tia OM và cung BC. Tính diện tích hình quạt tròn giới hạn bởi các bán kính OE, OC và cung nhỏ CE theo R, biết \(BC = R\sqrt 2 \).

Quảng cáo

Đề bài

Cho đường tròn (O; R) và ba điểm A, B, C nằm trên đường tròn với AB < AC. Gọi M là trung điểm của đoạn thẳng BC. Trên cung BC không chứa điểm A, lấy điểm D sao cho \(\widehat {BAD} = \widehat {CAM}\).

a) Chứng minh \(\widehat {ADB} = \widehat {CDM}\).

b) Gọi E là giao điểm của tia OM và cung BC. Tính diện tích hình quạt tròn giới hạn bởi các bán kính OE, OC và cung nhỏ CE theo R, biết \(BC = R\sqrt 2 \).

Phương pháp giải - Xem chi tiết

a) Bước 1: Chứng minh\(\widehat {BAM} = \widehat {DAC}\).

Bước 2: Chứng minh \(\frac{{AB}}{{AD}} = \frac{{CM}}{{CD}}\) (\(\Delta ABM\backsim \Delta ADC\)).

Bước 3: Chứng minh \(\widehat {ADB} = \widehat {CDM}\) (\(\Delta ABD\backsim \Delta CMD\)).

b) Bước 1: Chứng minh \(\Delta OBM = \Delta OCM\)để tính CM và suy ra \(\widehat {OMB} = \widehat {OMC}\).

Bước 2: Tính OM, chứng minh tam giác OCM vuông cân tại M.

Bước 3: Áp dụng công thức \(S = \frac{{\pi {R^2}n}}{{360}}\).

Lời giải chi tiết

a) Ta có \(\widehat {BAD} + \widehat {DAM} = \widehat {BAM},\widehat {DAM} + \widehat {CAM} = \widehat {DAC}\), mà \(\widehat {BAD} = \widehat {CAM}\)suy ra \(\widehat {BAM} = \widehat {DAC}\).

Ta lại có \(\widehat {ABM} = \widehat {ADC}\) (2 góc nội tiếp chắn cung AC của (O))

Xét tam giác ABM và tam giác ADC có:

\(\widehat {ABM} = \widehat {ADC}\), \(\widehat {BAM} = \widehat {DAC}\)

Suy ra \(\Delta ABM\backsim \Delta ADC\)(g.g), do đó \(\frac{{AB}}{{AD}} = \frac{{BM}}{{CD}} = \frac{{CM}}{{CD}}\).

Xét tam giác ABD và tam giác CMD có:

\(\widehat {BAD} = \widehat {MCD}\) (góc nội tiếp cùng chắn cung BD của (O))

\(\frac{{AB}}{{AD}} = \frac{{CM}}{{CD}}\)

Suy ra \(\Delta ABD\backsim \Delta CMD\)(c.g.c), do đó \(\widehat {ADB} = \widehat {CDM}\).

b) Xét tam giác OBM và tam giác OCM có:

OM chung

\(OB = OC\)(bằng bán kính (O))

\(MB = MC\)(M là trung điểm của BC)

Suy ra \(\Delta OBM = \Delta OCM\)(c.c.c), do đó \(CM = \frac{{BC}}{2} = \frac{{R\sqrt 2 }}{2}\) và \(\widehat {OMB} = \widehat {OMC}\)

Mà \(\widehat {OMB} + \widehat {OMC} = 180^\circ \), suy ra \(\widehat {OMB} = \widehat {OMC} = \frac{{180^\circ }}{2} = 90^\circ \)

Áp dụng định lý Pythagore trong tam giác vuông OCM có:

\(OM = \sqrt {O{C^2} - C{M^2}}  = \sqrt {{R^2} - {{\left( {\frac{{R\sqrt 2 }}{2}} \right)}^2}}  = \frac{{R\sqrt 2 }}{2}\)

Ta thấy \(OM = CM\left( { = \frac{{R\sqrt 2 }}{2}} \right)\) nên tam giác OCM vuông cân tại M, suy ra \(\widehat {COE} = 45^\circ \).

Diện tích hình quạt tròn giới hạn bởi các bán kính OE, OC và cung nhỏ CE là:

\(S = \frac{{\pi {R^2}.45}}{{360}} = \frac{{\pi {R^2}}}{8}\) (đvdt).

  • Giải bài 55 trang 124 sách bài tập toán 9 - Cánh diều tập 1

    Cho nửa đường tròn tâm O đường kính AB. Gọi C, D lần lượt là điểm chính giữa của cung AB, AC. a) Chứng minh \(\widehat {BAC} = \widehat {COD} = \widehat {ABC} = \widehat {ACO}\). b) Lấy điểm M thuộc cung CD. Chứng minh \(AM > CM\)và \(\widehat {COM} = 2\widehat {CAM}\). c) Khi M di chuyển trên cung nhỏ AC, tìm vị trí của điểm M để diện tích của tam giác MAC lớn nhất.

  • Giải bài 56 trang 124 sách bài tập toán 9 - Cánh diều tập 1

    Thành phố Hồ Chí Minh có vĩ độ là 10°10′ Bắc. Tìm độ dài cung kinh tuyến từ Thành phố Hồ Chí Minh đến Xích Đạo (làm tròn kết quả đến hàng trăm của kilômét), biết mỗi kinh tuyến là một nửa vòng Trái Đất và có độ dài khoảng 20 000 km.

  • Giải bài 57 trang 124 sách bài tập toán 9 - Cánh diều tập 1

    Cho hình thang vuông ABCD (\(\widehat A = \widehat B = 90^\circ \)) với \(\widehat C = 30^\circ \), BC = CD = a. Vẽ một phần đường tròn (C; CD) (Hình 54). Tính diện tích của phần tô màu xám theo a.

  • Giải bài 58 trang 125 sách bài tập toán 9 - Cánh diều tập 1

    Cho hình vành khuyên giới hạn bởi hai đường tròn (O; R), (O; r) với \(R + r = 1,2dm\), \(R > r\)và diện tích hình vành khuyên đó là 1,5072 dm2 (Hình 55). Tính R và r, \(\pi \approx 3,14\).

  • Giải bài 59 trang 125 sách bài tập toán 9 - Cánh diều tập 1

    Tam giác Reuleaux là hình tạo nên từ phần giao nhau của ba đường tròn cùng bán kính, tâm của mỗi đường tròn chính là giao điểm của hai đường tròn còn lại. Tạo tam giác Reuleaux từ ba đường tròn (A), (B), (C) (Hình 56). Tính số đo các cung nhỏ BaC, CbA, AcB của tam giác Reuleaux. Nêu nhận xét về số đo của các cung tròn đó.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close