Giải bài 5 trang 50 SGK Toán 8 tập 2– Chân trời sáng tạo

Tính các độ dài

Quảng cáo

Đề bài

Tính các độ dài \(x,y\) trong Hình 23.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì tạo ra một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

Lời giải chi tiết

a) Ta có: \(AC = AK + KC = 3 + 1,5 = 4,5\)

Xét tam giác \(ABC\) có \(HK//BC\) nên theo hệ quả của định lí Thales ta có:

\(\frac{{HK}}{{BC}} = \frac{{AK}}{{AC}} \Rightarrow \frac{x}{6} = \frac{3}{{4,5}}\). Do đó, \(x = \frac{{3.6}}{{4,5}} = 4\).

Vậy \(x = 4\).

b) Ta có: \(MH = MQ + QH = x + 1,8\)

Xét tam giác \(MNH\) có \(PQ//NH\) nên theo hệ quả của định lí Thales ta có:

\(\frac{{PQ}}{{NH}} = \frac{{MQ}}{{MH}} \Rightarrow \frac{{3,8}}{{6,4}} = \frac{x}{{x + 1,8}}\). Do đó, \(6,4x = 3,8.\left( {x + 1,8} \right)\)

\( \Leftrightarrow 6,4x = 3,8x + 6,84\)

\( \Leftrightarrow 6,4x - 3,8x = 6,84\)

\( \Leftrightarrow 2,6x = 6,84\)

\( \Leftrightarrow x = 6,84:2,6\)

\( \Leftrightarrow x = \frac{{171}}{{65}}\).

Vậy \(x = \frac{{171}}{{65}}\).

c) Vì \(\left\{ \begin{array}{l}DE \bot AD\\AB \bot AD\end{array} \right. \Rightarrow DE//AB\) (quan hệ từ vuông góc đến song song).

Xét \(\Delta CDE\) vuông tại \(D\) ta có:

\(E{D^2} + D{C^2} = E{C^2}\) (Định lí Py- ta – go)

\( \Leftrightarrow {8^2} + {6^2} = E{C^2}\)

\( \Leftrightarrow E{C^2} = 100\)

\( \Leftrightarrow EC = 10\)

Xét tam giác \(ABC\) có \(DE//AB\) nên theo hệ quả của định lí Thales ta có:

\(\left\{ \begin{array}{l}\frac{{AC}}{{DC}} = \frac{{AB}}{{ED}} \Rightarrow \frac{5}{6} = \frac{x}{8}\\\frac{{AC}}{{DC}} = \frac{{BC}}{{EC}} \Rightarrow \frac{5}{6} = \frac{y}{{10}}\end{array} \right.\). Do đó, \(\left\{ \begin{array}{l}x = \frac{{5.8}}{6} = \frac{{20}}{3}\\y = \frac{{5.10}}{6} = \frac{{25}}{3}\end{array} \right.\).

Vậy \(x = \frac{{20}}{3};y = \frac{{25}}{3}\).

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close