Giải bài 4.5 trang 8 sách bài tập toán 12 - Kết nối tri thức

Tìm: a) (int {{{left( {{2^x} + {3^x}} right)}^2}{rm{ }}} dx); b) (int {{{left( {{e^x} - {e^{ - x}}} right)}^2}} {rm{ }}dx).

Quảng cáo

Đề bài

Tìm:

a) \(\int {{{\left( {{2^x} + {3^x}} \right)}^2}{\rm{ }}} dx\);

b) \(\int {{{\left( {{e^x} - {e^{ - x}}} \right)}^2}} {\rm{ }}dx\).

Phương pháp giải - Xem chi tiết

Ý a: Áp dụng công thức tính nguyên hàm của hàm số mũ cơ số bất kỳ: \(\int {{a^{kx}}dx = \frac{{{a^{kx}}}}{{k\ln a}} + C} \).

Ý b: Áp dụng công thức tính nguyên hàm của hàm số mũ cơ số e: \(\int {{e^{kx}}dx = \frac{{{e^{kx}}}}{k} + C} \).

Lời giải chi tiết

a) Ta có \(\int {{{\left( {{2^x} + {3^x}} \right)}^2}{\rm{ }}} dx = \int {\left( {{2^{2x}}{\rm{ + }}2 \cdot {6^x}{\rm{ + }}{3^{2x}}} \right){\rm{ }}} dx = \int {\left( {{4^x}{\rm{ + }}2 \cdot {6^x}{\rm{ + }}{9^x}} \right){\rm{ }}} dx = \frac{{{4^x}}}{{2\ln 2}} + 2 \cdot \frac{{{6^x}}}{{\ln 6}} + \frac{{{9^x}}}{{2\ln 3}} + C\).

b) Ta có \({\int {\left( {{e^x} - {e^{ - x}}} \right)} ^2}{\rm{ }}dx = \int {\left( {{e^{2x}} - 2 + {e^{ - 2x}}} \right)dx = } \frac{{{e^{2x}}}}{2} - 2x - \frac{{{e^{ - 2x}}}}{{ - 2}} + C = \frac{{{e^{2x}} - {e^{ - 2x}}}}{2} - 2x + C\).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close