Bài 4.40 trang 208 SBT giải tích 12Giải bài 4.40 trang 208 sách bài tập giải tích 12. Chứng tỏ rằng... Quảng cáo
Đề bài Chứng tỏ rằng \(\dfrac{{z - 1}}{{z + 1}}\) là số thực khi và chỉ khi \(z\) là một số thực khác \(– 1\). Phương pháp giải - Xem chi tiết Đặt \(\dfrac{{z - 1}}{{z + 1}} = a \in \mathbb{R}\), biến đổi tìm \(z\) theo \(a\) và suy ra điều phải chứng minh. Lời giải chi tiết Hiển nhiên nếu \(z \in \mathbb{R},z \ne - 1\) thì \(\dfrac{{z - 1}}{{z + 1}} \in \mathbb{R}\) Ngược lại, nếu \(\dfrac{{z - 1}}{{z + 1}} = a \in \mathbb{R}\) thì \(z - 1 = az + a\) và \(a \ne 1\) Suy ra \((1 - a)z = a + 1\)\( \Rightarrow z = \dfrac{{a + 1}}{{1 - a}} \in \mathbb{R}\) và hiển nhiên \(z \ne - 1\) Loigiaihay.com
Quảng cáo
|