Giải bài 4.3 trang 7 sách bài tập toán 12 - Kết nối tri thứca) (int {left( {3x + 4} right)sqrt[3]{x}} dx); b) (int {frac{{{{left( {2x + 3} right)}^2}}}{{sqrt x }}} dx). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài a) \(\int {\left( {3x + 4} \right)\sqrt[3]{x}} dx\); b) \(\int {\frac{{{{\left( {2x + 3} \right)}^2}}}{{\sqrt x }}} dx\). Phương pháp giải - Xem chi tiết Ý a: Biến đổi biểu thức dưới dấu tích phân để xuất hiện các đa thức dạng lũy thừa của \(x\). Sau đó sử dụng công thức nguyên hàm của hàm lũy thừa. Ý b: Biến đổi biểu thức dưới dấu tích phân để xuất hiện các đa thức dạng lũy thừa của \(x\). Sau đó sử dụng công thức nguyên hàm của hàm lũy thừa. Lời giải chi tiết a) Ta có \(\left( {3x + 4} \right)\sqrt[3]{x} = 3x\sqrt[3]{x} + 4\sqrt[3]{x} = 3{x^{\frac{4}{3}}} + 4{x^{\frac{1}{3}}}\). Do đó \(\int {\left( {3x + 4} \right)\sqrt[3]{x}} dx = \int {\left( {3{x^{\frac{4}{3}}} + 4{x^{\frac{1}{3}}}} \right)dx = } 3\int {{x^{\frac{4}{3}}}dx + } 4\int {{x^{\frac{1}{3}}}dx} \) \( = 3\frac{{{x^{\frac{7}{3}}}}}{{\left( {\frac{7}{3}} \right)}} + 4\frac{{{x^{\frac{4}{3}}}}}{{\left( {\frac{4}{3}} \right)}} + C = \frac{9}{7}{x^2}\sqrt[3]{x} + 3x\sqrt[3]{x} + C = \left( {\frac{9}{7}{x^2} + 3x} \right)\sqrt[3]{x} + C.\) b) Ta có \(\frac{{{{\left( {2x + 3} \right)}^2}}}{{\sqrt x }} = \frac{{4{x^2} + 12x + 9}}{{\sqrt x }} = 4x\sqrt x + 12\sqrt x + \frac{9}{{\sqrt x }} = 4{x^{\frac{3}{2}}} + 12{x^{\frac{1}{2}}} + \frac{9}{{\sqrt x }}\). Do đó \(\int {\frac{{{{\left( {2x + 3} \right)}^2}}}{{\sqrt x }}} dx = \int {\left( {4{x^{\frac{3}{2}}} + 12{x^{\frac{1}{2}}} + \frac{9}{{\sqrt x }}} \right)dx = } 4\int {{x^{\frac{3}{2}}}dx + } 12\int {{x^{\frac{1}{2}}}dx} + 9\int {\frac{1}{{\sqrt x }}dx} \) \( = 4 \cdot \frac{{{x^{\frac{5}{2}}}}}{{\left( {\frac{5}{2}} \right)}} + 12 \cdot \frac{{{x^{\frac{3}{2}}}}}{{\left( {\frac{3}{2}} \right)}} + 9 \cdot 2\sqrt x + C = \frac{8}{5}{x^2}\sqrt x + 8x\sqrt x + 18\sqrt x + C = \left( {\frac{8}{5}{x^2} + 8x + 18} \right)\sqrt x + C.\)
Quảng cáo
|