Giải bài 3.8 trang 38 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Cho tam giác ABC có a = 19,b = 6,c = 15.

Quảng cáo

Đề bài

Cho tam giác \(ABC\) có \(a = 19,\,\,b = 6,\,\,c = 15.\)

a) Tính \(\cos A.\)

b) Tính diện tích tam giác.

c) Tính độ dài đường cao \({h_c}.\)

d) Tính độ dài bán kính đường tròn nội tiếp của tam giác.

Phương pháp giải - Xem chi tiết

- Áp dụng định lý cosin để tính \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

- Tính nửa chu vi \(\Delta ABC\) là \(p = \frac{{a + b + c}}{2}.\)

- Áp dụng công thức Hê-rông để tính diện tịch \(\Delta ABC\): \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)

- Độ dài đường cao \({h_c}\): \(S = \frac{1}{2}c.{h_c}\)

- Bán kính đường tròn nội tiếp của tam giác: \(S = pr\)

Lời giải chi tiết

a) Áp dụng định lý cosin ta có:

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{6^2} + {{15}^2} - {{19}^2}}}{{2.6.15}} = \frac{{ - 5}}{9}.\)

b) Nửa chu vi \(\Delta ABC\) là: \(p = \frac{{a + b + c}}{2} = \frac{{19 + 6 + 15}}{2} = 20.\)

Diện tích \(\Delta ABC\) là: \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \sqrt {20\left( {20 - 19} \right)\left( {20 - 6} \right)\left( {20 - 15} \right)}  = \sqrt {20.1.14.5}  = 10\sqrt {14} .\)

c) Độ dài đường cao \({h_c}\) là:

\(S = \frac{1}{2}c.{h_c}\,\, \Rightarrow \,\,{h_c} = \frac{{2S}}{c} = \frac{{2.10\sqrt {14} }}{{15}} = \frac{{4\sqrt {14} }}{3}.\)

d) Bán kính đường tròn nội tiếp của \(\Delta ABC\) là:

\(S = pr\,\, \Rightarrow \,\,r = \frac{S}{p} = \frac{{10\sqrt {14} }}{{20}} = \frac{{\sqrt {14} }}{2}.\)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close