Bài 3.55 trang 183 SBT giải tích 12Giải bài 3.55 trang 183 sách bài tập giải tích 12. Thể tích của khối tròn xoay tạo nên do quay quanh trục Ox hình phẳng giới hạn bởi các đường... Quảng cáo
Đề bài Thể tích của khối tròn xoay tạo nên do quay quanh trục \(\displaystyle Ox\) hình phẳng giới hạn bởi các đường \(\displaystyle y = {\left( {1 - x} \right)^2},y = 0\), \(\displaystyle x = 0\) và \(\displaystyle x = 2\) bằng A. \(\displaystyle \frac{{8\pi \sqrt 2 }}{3}\) B. \(\displaystyle \frac{{2\pi }}{5}\) C. \(\displaystyle \frac{{5\pi }}{2}\) D. \(\displaystyle 2\pi \) Phương pháp giải - Xem chi tiết Sử dụng công thức tính thể tích \(\displaystyle V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \). Lời giải chi tiết Ta có: \(\displaystyle V = \pi \int\limits_0^2 {{{\left[ {{{\left( {1 - x} \right)}^2}} \right]}^2}dx} \) \(\displaystyle = \pi \int\limits_0^2 {{{\left( {x - 1} \right)}^4}dx} \) \(\displaystyle = \pi .\left. {\frac{{{{\left( {x - 1} \right)}^5}}}{5}} \right|_0^2 = \pi \left( {\frac{1}{5} + \frac{1}{2}} \right) = \frac{{2\pi }}{5}\). Chọn B. Loigiaihay.com
Quảng cáo
|