Bài 3.42 trang 132 SBT hình học 12

Giải bài 3.42 trang 132 sách bài tập hình học 12. Lập phương trình đường vuông góc chung của d và d’...

Quảng cáo

Đề bài

Cho hai đường thẳng: \(d:\dfrac{{x - 1}}{{ - 1}} = \dfrac{{y - 2}}{2} = \dfrac{z}{3}\) và \(d':\left\{ {\begin{array}{*{20}{c}}{x = 1 + t'}\\{y = 3 - 2t'}\\{z = 1}\end{array}} \right.\)

Lập phương trình đường vuông góc chung của \(d\) và \(d’\).

Phương pháp giải - Xem chi tiết

- Tham số hóa tọa độ hai điểm \(M,M'\) lần lượt thuộc hai đường thẳng \(d,d'\).

- Sử dụng điều kiện \(\overrightarrow {MM'} \) là đường vuông góc chung của \(d,d'\) thì \(\left\{ \begin{array}{l}\overrightarrow {MM'} .\overrightarrow {{u_d}}  = 0\\\overrightarrow {MM'} .\overrightarrow {{u_{d'}}}  = 0\end{array} \right.\).

- Tìm tọa độ của \(M,M'\) và viết phương trình đường thẳng \(MM'\).

Lời giải chi tiết

Phương trình tham số của đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 2 + 2t}\\{z = 3t}\end{array}} \right.\)

Vecto chỉ phương của hai đường thẳng \(d\) và \(d’\) lần lượt là \(\overrightarrow a  = ( - 1;2;3),\overrightarrow {a'}  = (1; - 2;0)\).

Xét điểm M(1 – t; 2 + 2t; 3t) trên d và điểm M’(1 + t’; 3 – 2t’ ; 1) trên d’ ta có  \(\overrightarrow {MM'}  = (t' + t;1 - 2t' - 2t;1 - 3t)\).

MM’ là đường vuông góc chung của d và d’.

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\overrightarrow {MM'} .\overrightarrow a  = 0}\\{\overrightarrow {MM'} .\overrightarrow {a'}  = 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - t' - t + 2 - 4t' - 4t + 3 - 9t = 0\\t' + t - 2 + 4t' + 4t = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5t' + 14t = 5}\\{5t' + 5t = 2}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{t = \dfrac{1}{3}}\\{t' = \dfrac{1}{{15}}}\end{array}} \right.\)

Thay giá trị của t và t’ vào ta được tọa độ M và M’ là \(M\left( {\dfrac{2}{3};\dfrac{8}{3};1} \right),M'\left( {\dfrac{{16}}{{15}};\dfrac{{43}}{{15}};1} \right)\)

Do đó \(\overrightarrow {MM'}  = \left( {\dfrac{6}{{15}};\dfrac{3}{{15}};0} \right)\)

Suy ra đường vuông góc chung \(\Delta \) của d và d’ có vecto chỉ phương \(\overrightarrow u  = (2;1;0)\)

Vậy phương trình tham số của \(\Delta \) là: \(\left\{ {\begin{array}{*{20}{c}}{x = \dfrac{2}{3} + 2t}\\{y = \dfrac{8}{3} + t}\\{z = 1}\end{array}} \right.\)

Loigiaihay.com

  • Bài 3.43 trang 132 SBT hình học 12

    Giải bài 3.43 trang 132 sách bài tập hình học 12. Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Bằng phương pháp tọa độ hãy tính khoảng cách giữa hai đường thẳng CA’ và DD’.

  • Bài 3.44 trang 132 SBT hình học 12

    Giải bài 3.44 trang 132 sách bài tập hình học 12. Cho mặt phẳng : 2x + y +z – 1 = 0 và đường thẳng d. Gọi M là giao điểm của d và , hãy viết phương trình của đường thẳng đi qua M vuông góc với d và nằm trong ...

  • Bài 3.45 trang 132 SBT hình học 12

    Giải bài 3.45 trang 132 sách bài tập hình học 12. Cho hai đường thẳng...

  • Bài 3.41 trang 132 SBT hình học 12

    Giải bài 3.41 trang 132 sách bài tập hình học 12. Cho điểm M(1; -1; 2) và mặt phẳng: 2x – y + 2z + 12 = 0...

  • Bài 3.40 trang 131 SBT hình học 12

    Giải bài 3.40 trang 131 sách bài tập hình học 12. Cho điểm M(2; -1; 1) và đường thẳng ...

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close