Giải bài 3.40 trang 43 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Tính độ dài cạnh và số đo các góc còn lại của tam giác

Quảng cáo

Đề bài

Cho tam giác \(ABC\) có \(AB = 1,\,\,BC = 2,\,\,\widehat {ABC} = {60^ \circ }.\) Tính độ dài cạnh và số đo các góc còn lại của tam giác

Phương pháp giải - Xem chi tiết

-  Áp dụng định lý cosin để tính cạnh \(AC\):

\(A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\)

-  Áp dụng định lý sin để tính các \(\widehat A,\,\,\widehat C\): \(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}.\)

Lời giải chi tiết

Độ dài cạnh \(AC\) là:

Áp dụng định lý cosin, ta có:

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\\ \Rightarrow \,\,A{C^2} = 1 + 4 - 2.1.2.\cos {60^ \circ } = 3\\ \Rightarrow \,\,AC = \sqrt 3 .\end{array}\)

Áp dụng định lý sin, ta có:

\(\left\{ {\begin{array}{*{20}{c}}{\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}}}\\{\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\sin A = \frac{{BC.\sin B}}{{AC}} = \frac{{2.\sin {{60}^ \circ }}}{{\sqrt 3 }} = 1}\\{\sin C = \frac{{AB.\sin B}}{{AC}} = \frac{{1.\sin {{60}^ \circ }}}{{\sqrt 3 }} = \frac{1}{2}}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\widehat A = {{90}^ \circ }}\\{\widehat C = {{30}^ \circ }}\end{array}} \right.} \right.} \right.\)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close