Giải bài 3.32 trang 40 sách bài tập toán 9 - Kết nối tri thức tập 1a) Khai triển ({left( {2 - sqrt 3 } right)^2}) và ({left( {2sqrt 3 - 3} right)^2}) thành những biểu thức không còn bình phương. b) Sử dụng kết quả câu a, rút gọn các biểu thức sau: (A = sqrt {4 - 2sqrt 3 - sqrt {21 - 12sqrt 3 } } ); (B = sqrt {2 + sqrt 3 + sqrt {4 - 2sqrt 3 - sqrt {21 - 12sqrt 3 } } } ). Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Quảng cáo
Đề bài a) Khai triển \({\left( {2 - \sqrt 3 } \right)^2}\) và \({\left( {2\sqrt 3 - 3} \right)^2}\) thành những biểu thức không còn bình phương. b) Sử dụng kết quả câu a, rút gọn các biểu thức sau: \(A = \sqrt {4 - 2\sqrt 3 - \sqrt {21 - 12\sqrt 3 } } \); \(B = \sqrt {2 + \sqrt 3 + \sqrt {4 - 2\sqrt 3 - \sqrt {21 - 12\sqrt 3 } } } \). Phương pháp giải - Xem chi tiết + Với A, B là các biểu thức không âm, ta có \(\sqrt A .\sqrt B = \sqrt {AB} \). + \(\sqrt {{A^2}} = \left| A \right|\) với mọi biểu thức A. Lời giải chi tiết a) \({\left( {2 - \sqrt 3 } \right)^2} = {2^2} - 2.2\sqrt 3 + {\left( {\sqrt 3 } \right)^2} = 7 - 4\sqrt 3 \); \({\left( {2\sqrt 3 - 3} \right)^2} = {\left( {2\sqrt 3 } \right)^2} - 2.2\sqrt 3 .3 + {3^2} = 21 - 12\sqrt 3 .\) b) Theo a ta có: \(\sqrt {21 - 12\sqrt 3 } = \sqrt {{{\left( {2\sqrt 3 - 3} \right)}^2}} \\= \left| {2\sqrt 3 - 3} \right| = 2\sqrt 3 - 3\) Do đó, \(A = \sqrt {4 - 2\sqrt 3 - \sqrt {21 - 12\sqrt 3 } } \) \(= \sqrt {4 - 2\sqrt 3 - 2\sqrt 3 + 3} = \sqrt {7 - 4\sqrt 3 } \\= \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} = \left| {2 - \sqrt 3 } \right| = 2 - \sqrt 3 \) \(B = \sqrt {2 + \sqrt 3 + \sqrt {4 - 2\sqrt 3 - \sqrt {21 - 12\sqrt 3 } } } \\ = \sqrt {2 + \sqrt 3 + A} = \sqrt {2 + \sqrt 3 + 2 - \sqrt 3 } \\= \sqrt 4 = 2\)
Quảng cáo
|