Giải bài 3 trang 92 vở thực hành Toán 9 tập 2Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Chứng minh rằng (widehat {BAH} = widehat {OAC}). Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Quảng cáo
Đề bài Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Chứng minh rằng \(\widehat {BAH} = \widehat {OAC}\). Phương pháp giải - Xem chi tiết + Cho AH cắt BC tại D ta được tam giác ABD vuông tại D. Khi đó, \(\widehat {BAH} = {90^o} - \widehat {ABC}\). + \(\Delta AOC\) cân tại O nên: \(\widehat {OAC} = \widehat {OCA} = \frac{{{{180}^o} - \widehat {AOC}}}{2} = {90^o} - \frac{{\widehat {AOC}}}{2} = {90^o} - \widehat {ABC}\). + Do đó, \(\widehat {BAH} = \widehat {OAC}\). Lời giải chi tiết Cho AH cắt BC tại D ta được tam giác ABD vuông tại D. Khi đó, \(\widehat {BAH} = \widehat {BAD} = {90^o} - \widehat {ABD} = {90^o} - \widehat {ABC}\left( 1 \right)\) Mặt khác, vì \(\Delta AOC\) cân tại O nên: \(\widehat {OAC} = \widehat {OCA} = \frac{{{{180}^o} - \widehat {AOC}}}{2} = {90^o} - \frac{{\widehat {AOC}}}{2} = {90^o} - \widehat {ABC}\;\left( 2 \right)\) Từ (1), (2) suy ra: \(\widehat {BAH} = \widehat {OAC}\).
Quảng cáo
|