Giải bài 3 trang 102 sách bài tập toán 10 - Chân trời sáng tạo

Cho tam giác ABC nội tiếp trong đường tròn (O)

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

Đề bài

Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm tam giác ABC B’ là điểm đối xứng với B qua tâm O . Hãy so sánh các vectơ \(\overrightarrow {AH} \) và \(\overrightarrow {B'C} ,\overrightarrow {AB'} \) và \(\overrightarrow {HC} \)

Lời giải chi tiết

Ta có B’ là điểm đối xứng với B qua tâm O nên BB’ là đường kính, suy ra \(\widehat {B'CB} = 90^\circ  \Rightarrow B'C \bot BC\) và \(\widehat {B'AB} = 90^\circ  \Rightarrow B'A \bot BA\)

Mặt khác ta có: \(AH \bot BC,CH \bot AB\), suy ra \(B'C//AH,AB'//CH\)

Suy ra AB’CH là hình bình hành

Vậy \(\overrightarrow {AH}  = \overrightarrow {B'C} \) và \(\overrightarrow {AB'}  = \overrightarrow {HC} \)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close