Giải bài 26 trang 114 sách bài tập toán 9 - Cánh diều tập 2

Cho ngũ giác đều ABCDE. Về phía ngoài của ngũ giác đó dựng tam giác đều PDE (Hình 24). Tính số đo góc APC.

Quảng cáo

Đề bài

Cho ngũ giác đều ABCDE. Về phía ngoài của ngũ giác đó dựng tam giác đều PDE (Hình 24). Tính số đo góc APC.

Phương pháp giải - Xem chi tiết

Dựa vào: Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.

Lời giải chi tiết

Tổng số đo tất cả các góc của ngũ giác ABCDE bằng tổng số đo các góc của tam giác ABE và tứ giác BCDE, và bằng: 180° + 360° = 540°.

Do ABCDE là ngũ giác đều suy ra các góc của nó đều bằng nhau và bằng

\(\frac{{{{540}^o}}}{5} = {108^o}\).

Do PDE là tam giác đều nên PE = PD = DE và \(\widehat {PDE} = \widehat {PED} = \widehat {EPD} = {60^o}\).

Do đó: \(\widehat {AEP} = \widehat {AED} + \widehat {DEP} = {180^o} + {60^o} = {168^o}\);

\(\widehat {CDP} = \widehat {CDE} + \widehat {EDP} = {180^o} + {60^o} = {168^o}\).

Do ABCDE là ngũ giác đều suy ra DE = EA = DC.

Do đó PE = PD = DE = EA = DC nên các tam giác EAP, DCP là các tam giác cân lần lượt tại các đỉnh E và D.

Suy ra: \(\widehat {EPA} = \frac{{{{180}^o} - \widehat {AEP}}}{2} = \frac{{{{180}^o} - {{168}^o}}}{2} = {6^o}\);

\(\widehat {DPC} = \frac{{{{180}^o} - \widehat {CDP}}}{2} = \frac{{{{180}^o} - {{168}^o}}}{2} = {6^o}\).

Vì vậy ta có \(\widehat {APC} = \widehat {EPD} - \widehat {EPA} - \widehat {DPC}\)

\(= {60^o} - {6^o} - {6^o} = {48^o}\).

  • Giải bài 27 trang 114 sách bài tập toán 9 - Cánh diều tập 2

    Cho tam giác đều ABC có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M theo thứ tự là trung điểm của HA, HB, HC. Chứng minh lục giác DKFIEM là lục giác đều.

  • Giải bài 28 trang 114 sách bài tập toán 9 - Cánh diều tập 2

    Cho lục giác đều ABCDEF. Về phía ngoài lục giác dựng các hình vuông BAA1A2, CBA3A4, DCA5A6, EDA7A8, FEA9A10, AFA11A12. Đa giác A1A2A3…A11A12 có phải là đa giác đều không? Vì sao?

  • Giải bài 29 trang 114 sách bài tập toán 9 - Cánh diều tập 2

    Cho lục giác đều ABCDEF với tâm O thoả mãn phép quay thuận chiều 60° tâm O biến các điểm A, B, C, D, E, F lần lượt thành các điểm B, C, D, E, F, A. Các điểm M, N lần lượt là trung điểm của EF, BD. a) Tìm α (0 < α < 180), biết phép quay ngược chiều α° tâm O biến các điểm D, C lần lượt thành các điểm B, A. b) Chứng minh phép quay thuận chiều 60° tâm A biến các điểm O, N lần lượt thành các điểm F, M.

  • Giải bài 30 trang 115 sách bài tập toán 9 - Cánh diều tập 2

    Trên mặt phẳng tọa độ Oxy cho hình vuông ABCD với A(0; 2), B(–2; 0), C(0; –2), D(2; 0). Phép quay thuận chiều 90° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A’, B’, C’, D’. Tính chu vi tứ giác A’B’C’D’.

  • Giải bài 31 trang 115 sách bài tập toán 9 - Cánh diều tập 2

    Cho hình vuông ABCD và O là giao điểm của AC và BD. Gọi M là trung điểm của AB, N là trung điểm của AO (Hình 25). Phép quay ngược chiều 90° tâm O biến các điểm N, M lần lượt thành các điểm N’, M’. a) Chứng minh tam giác BN'M' là tam giác vuông cân. b) Tính tỉ số diện tích tam giác ANM và diện tích tam giác CN'M'. c) Phát biểu “Phép quay thuận chiều 90° tâm N biến điểm O thành điểm M, biến điểm D thành điểm B” là đúng hay sai? Vì sao?

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close