Giải bài 2.4 trang 44 sách bài tập toán 12 - Kết nối tri thứcTrong không gian, cho năm điểm phân biệt A, B, C, D, E. Chứng minh rằng: a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AE} - \overrightarrow {DE} \); b) \(\overrightarrow {AB} + \overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {BD} \); c) \(\overrightarrow {BC} + \overrightarrow {DE} = \overrightarrow {BE} - \overrightarrow {CD} \). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Trong không gian, cho năm điểm phân biệt A, B, C, D, E. Chứng minh rằng: a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AE} - \overrightarrow {DE} \); b) \(\overrightarrow {AB} + \overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {BD} \); c) \(\overrightarrow {BC} + \overrightarrow {DE} = \overrightarrow {BE} - \overrightarrow {CD} \). Phương pháp giải - Xem chi tiết Sử dụng phép cộng, trừ vectơ, tính chất của phép cộng, phép trừ đó (giao hoán, kết hợp), cộng hai vectơ đối với nhau. Ngoài ra còn cần lựa chọn điểm trung gian trong các điểm đã cho sẵn một cách phù hợp để xuất hiện các vectơ mình muốn và các vectơ đối để loại những vectơ không cần dùng đến. Cụ thể ta sẽ biến đổi một vế để đưa về vế còn lại, từ đó suy ra điều phải chứng minh. Lời giải chi tiết a) Ta có \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AD} = \overrightarrow {AE} + \overrightarrow {ED} = \overrightarrow {AE} - \overrightarrow {DE} \) (đ.p.c.m). b) Ta có \(\overrightarrow {AB} + \overrightarrow {DE} = \overrightarrow {AE} + \overrightarrow {ED} + \overrightarrow {DB} + \overrightarrow {DE} = \overrightarrow {AE} + \left( {\overrightarrow {ED} + \overrightarrow {DE} } \right) + \overrightarrow {DB} = \overrightarrow {AE} + \overrightarrow {DB} = \overrightarrow {AE} - \overrightarrow {BD} \) (đ.p.c.m). c) Ta có \(\overrightarrow {BC} + \overrightarrow {DE} = BE + EC + DC + CE = BE + \left( {EC + CE} \right) + DC = BE + DC = BE - CD\) (đ.p.c.m).
Quảng cáo
|