Giải bài 22 trang 88 sách bài tập toán 9 - Cánh diều tập 1Trên mặt biển, khi khoảng cách từ ca nô đến chân tháp hải đăng là AB = 300 m, một người đứng trên tháp hải đăng đó, đặt mắt tại vị trí C và nhìn về phía ca nô theo phương CA tạo với phương nằm ngang Cx một góc là \(\widehat {ACx} = 27^\circ \) (minh hoạ ở Hình 22). Tính chiều cao BH của tháp hải đăng (làm tròn kết quả đến hàng phần trăm của mét), biết AB//Cx và độ cao từ tầm mắt của người đó đến đỉnh tháp hải đăng là CH = 2,1 m. Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Quảng cáo
Đề bài Trên mặt biển, khi khoảng cách từ ca nô đến chân tháp hải đăng là AB = 300 m, một người đứng trên tháp hải đăng đó, đặt mắt tại vị trí C và nhìn về phía ca nô theo phương CA tạo với phương nằm ngang Cx một góc là \(\widehat {ACx} = 27^\circ \) (minh hoạ ở Hình 22). Tính chiều cao BH của tháp hải đăng (làm tròn kết quả đến hàng phần trăm của mét), biết AB//Cx và độ cao từ tầm mắt của người đó đến đỉnh tháp hải đăng là CH = 2,1 m. Phương pháp giải - Xem chi tiết Bước 1: Tính BC (dựa vào tỉ số lượng giác trong tam giác ABC). Bước 2: \(BH = BC + CH\). Lời giải chi tiết Do AB//Cx nên \(\widehat {BAC} = \widehat {ACx} = 27^\circ \) (so le trong). Ta lại có tam giác ABC vuông tại C nên \(\tan A = \frac{{BC}}{{AB}}\) hay \(BC = AB.\tan A = 300.\tan 27^\circ \). Chiều cao BH của tháp hải đăng là: \(BH = BC + CH = 300.\tan 27^\circ + 2,1 \approx 154,96\)m.
Quảng cáo
|