Giải bài 1.9 trang 8 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngKim giờ dài 6cm và kim phút dài 11cm của đồng hồ chỉ 4 giờ. Hỏi thời gian ít nhất để 2 kim vuông góc với nhau là bao nhiêu? Quảng cáo
Đề bài Kim giờ dài 6cm và kim phút dài 11cm của đồng hồ chỉ 4 giờ. Hỏi thời gian ít nhất để 2 kim vuông góc với nhau là bao nhiêu? Lúc đó tổng quãng đường 2 đầu mút kim giờ và kim phút đi được là bao nhiêu? Phương pháp giải - Xem chi tiết Từ thực tế kim giờ kim phút chạy như thế nào, ta suy ra được nó quét bao nhiêu phần của 1 vòng. 1 vòng có số đo \(2\pi \), ta dễ dàng tính được góc. Và từ góc, áp dụng công thức \(l = \alpha .R\)để tính tổng quãng đường đầu kim đi được. Lời giải chi tiết Một giờ kim phút quét được một vòng, tương ứng với góc lượng giác \(2\pi \); kim giờ quét được 1/12 vòng, tương ứng với góc \(2\pi .\frac{1}{{12}} = \frac{\pi }{6}\). Hiệu vận tốc giữa kim phút và kim giờ là: \(2\pi - \frac{\pi }{6} = \frac{{11\pi }}{6}\). Vào lúc 4 giờ hai kim tạo với nhau một góc 4/12 vòng tương ứng là \(\frac{4}{{12}}.2\pi = \frac{{2\pi }}{3}\). Khoảng thời gian ít nhất để hai kim vuông góc với nhau là \(\left( {\frac{{2\pi }}{3} - \frac{\pi }{2}} \right):\frac{{11\pi }}{6} = \frac{1}{{11}}\) (giờ). Vậy sau \(\frac{1}{{11}}\) (giờ) hai kim sẽ vuông góc với nhau. Tổng quãng đường hai đầu mút kim đi được là \(l = \alpha .R = 6.\frac{1}{{11}}.\frac{\pi }{6} + 11.\frac{1}{{11}}.2\pi = \frac{{23\pi }}{{11}}(cm)\).
Quảng cáo
|