Giải bài 1 trang 122 vở thực hành Toán 9 tập 2

Cho một hình trụ có đường kính của đáy bằng với chiều cao và có thể tích bằng (2pi ;c{m^3}). a) Tính chiều cao của hình trụ. b) Diện tích toàn phần của hình trụ bằng tổng diện tích xung quanh và diện tích hai đáy trụ. Tính diện tích toàn phần của hình trụ trên.

Quảng cáo

Đề bài

Cho một hình trụ có đường kính của đáy bằng với chiều cao và có thể tích bằng \(2\pi \;c{m^3}\).

a) Tính chiều cao của hình trụ.

b) Diện tích toàn phần của hình trụ bằng tổng diện tích xung quanh và diện tích hai đáy trụ. Tính diện tích toàn phần của hình trụ trên.

Phương pháp giải - Xem chi tiết

a) + Từ công thức \(V = \pi {R^2}h\) ta tính được R theo h.

+ Tính thể tích của hình trụ theo h, cho biểu thức đó bằng \(2\pi \), từ đó giải phương trình tìm h.

b) + Diện tích xung quanh của hình trụ có bán kính đáy R và chiều cao h là: \({S_{xq}} = 2\pi Rh\).

+ Diện tích hai đáy hình trụ bán kính R là: \({S_1} = 2.\pi {R^2}\).

+ Diện tích toàn phần hình trụ: $S={{S}_{xq}}+{{S}_{đáy}}$.

Lời giải chi tiết

a) \(V = \pi {R^2}h\) mà \(2R = h\) nên \(R = \frac{h}{2}\), suy ra \(V = \pi {\left( {\frac{h}{2}} \right)^2}.h = \pi .\frac{{{h^3}}}{4}\)

Chiều cao của hình trụ là:

\(h = \sqrt[3]{{\frac{{4V}}{\pi }}} = \sqrt[3]{{\frac{{4 \cdot 2\pi }}{\pi }}} = \sqrt[3]{8} = 2\,\,\left( {{\rm{cm}}} \right)\).

b) Diện tích xung quanh của hình trụ là:

\({S_{xq}} = 2\pi Rh = 2\pi .1.2 = 4\pi \left( {c{m^2}} \right)\).

Diện tích hai đáy của hình trụ là:

${{S}_{đáy}}=2\pi {{R}^{2}}=2.\pi .{{\left( \frac{2}{2} \right)}^{2}}=2\pi \left( c{{m}^{2}} \right)$

Diện tích toàn phần của hình trụ là:  \({{S}_{tp}}={{S}_{xq}}+2{{S}_{đáy}}=4\pi +2\pi =6\pi \) $\left( \text{c}{{\text{m}}^{2}} \right)$

  • Giải bài 2 trang 122 vở thực hành Toán 9 tập 2

    Một vòng bi bằng thép (phần thép giữa hai hình trụ) có hình dạng và kích thước như hình vẽ bên. Tính thể tích của vòng bi đó.

  • Giải bài 3 trang 122, 123 vở thực hành Toán 9 tập 2

    Chiếc mũ của chú hề với các kích thước như hình bên. Hãy tính tổng diện tích vải cần để làm nên chiếc mũ (coi mép khâu không đáng kể và làm tròn kết quả đến hàng phần mười của (c{m^2})).

  • Giải bài 4 trang 123 vở thực hành Toán 9 tập 2

    Người ta nhấn chìm hoàn toàn 5 viên bi có dạng hình cầu vào một chiếc cốc hình trụ đựng đầy nước, mỗi viên bi có đường kính 2cm. Tính lượng nước tràn ra khỏi cốc.

  • Giải bài 5 trang 123 vở thực hành Toán 9 tập 2

    Một bồn chứa xăng gồm hai nửa hình cầu có đường kính 1,8m và một hình trụ có chiều cao bằng 3,6m. Tính thể tích của bồn chứa xăng (làm tròn kết quả đến hàng phần trăm của ({m^3})).

  • Giải bài 6 trang 123, 124 vở thực hành Toán 9 tập 2

    Từ một tấm tôn hình chữ nhật có kích thước (50cm times 240cm), người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50cm, theo hai cách sau: • Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng nước hình trụ. • Cách 2: Cắt tấm tôn ban đầu thành hai tấm bằng nhau hình chữ nhật, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng. Kí hiệu ({V_1}) là thể tích của thùng gò được theo Cách 1 và ({V_2}) là tổng thể tích của hai thùng gò được theo Cách 2. Tính tỉ số (frac{{{V_

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close